@article{AFST_1999_6_8_1_25_0, author = {Barndorff-Nielsen, Ole E. and Hviid Rydberg, Tina}, title = {Infinite trees and inverse gaussian random variables}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {25--34}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 8}, number = {1}, year = {1999}, mrnumber = {1721586}, zbl = {0962.60079}, language = {en}, url = {http://archive.numdam.org/item/AFST_1999_6_8_1_25_0/} }
TY - JOUR AU - Barndorff-Nielsen, Ole E. AU - Hviid Rydberg, Tina TI - Infinite trees and inverse gaussian random variables JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1999 SP - 25 EP - 34 VL - 8 IS - 1 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - http://archive.numdam.org/item/AFST_1999_6_8_1_25_0/ LA - en ID - AFST_1999_6_8_1_25_0 ER -
%0 Journal Article %A Barndorff-Nielsen, Ole E. %A Hviid Rydberg, Tina %T Infinite trees and inverse gaussian random variables %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1999 %P 25-34 %V 8 %N 1 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U http://archive.numdam.org/item/AFST_1999_6_8_1_25_0/ %G en %F AFST_1999_6_8_1_25_0
Barndorff-Nielsen, Ole E.; Hviid Rydberg, Tina. Infinite trees and inverse gaussian random variables. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 8 (1999) no. 1, pp. 25-34. http://archive.numdam.org/item/AFST_1999_6_8_1_25_0/
[1] A note on electrical networks and the inverse Gaussian distribution, Adv. Appl. Probab. 26 (1994), pp. 63-67. | MR | Zbl
) .-[2] Trees with random conductivities and the (reciprocal) inverse Gaussian distribution, Adv. Appl. Probab. 30 (1998), pp. 409-424. | MR | Zbl
) and ) .-[3] Statistical Properties of the Generalised Inverse Gaussian Distribution, Lecture Notes in Statistics, Springer-Verlag, New York, 9 (1982). | Zbl
) .-[4] La loi gausienne inverse généralisée, comme premier ou dernier temps de passage de diffusion, Bull. Sc. Math., Série 2, 115 (1991), pp. 301-368. | MR | Zbl
) .-