PETER SWINNERTON-DYER

Rational points on some pencils of conics with 6 singular fibres

Annales de la faculté des sciences de Toulouse 6^e série, tome 8, n° 2 (1999), p. 331-341

http://www.numdam.org/item?id=AFST_1999_6_8_2_331_0

© Université Paul Sabatier, 1999, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Rational points on some pencils of conics with 6 singular fibres (*)

SIR PETER SWINNERTON-DYER⁽¹⁾

RÉSUMÉ. — Soient k un corps de nombres et $c \in k$ non carré. Soient f_4, f_2 des polynômes homogènes en X, Y, de degré 4 et 2 respectivement. On donne des conditions nécessaires et suffisantes pour que l'équation $U^2 = U^2 - f(X, Y) f(X, Y)$

$$U^2 - cV^2 = f_4(X, Y)f_2(X, Y)$$

ait des solutions dans k.

ABSTRACT. — Let k be an algebraic number field, let c be a non-square in k and let f_4, f_2 be homogeneous polynomials in X, Y of degrees 4 and 2 respectively. Necessary and sufficient conditions are obtained for the solubility in k of

 $U^{2} - cV^{2} = f_{4}(X, Y)f_{2}(X, Y).$

Let $\mathcal{Y} \to \mathbf{P}^1$ be a pencil of conics defined over an algebraic number field k. It is conjectured that the only obstruction to the Hasse principle on \mathcal{Y} , and also to weak approximation, is the Brauer-Manin obstruction; and it was shown in [3] that this follows from Schinzel's Hypothesis. Descriptions of the Brauer-Manin obstruction and of Schinzel's Hypothesis can be found in [3]. It is of interest that arguments which show that the Brauer-Manin obstruction is the only obstruction to the Hasse principle for particular classes of \mathcal{Y} normally fall into two parts:

^(*) Reçu le 24 décembre 1998, accepté le 27 mai 1999

⁽¹⁾ Isaac Newton Institute, Cambridge University 20 Clarkson Rd., Cambridge, United Kingdom.

E-mail: hpfs100@newton.cam.ac.uk

Sir Peter Swinnerton-Dyer

- (i) the proof that some comparatively down-to-earth obstruction is the only obstruction to the Hasse principle;
- (ii) the identification of that obstruction with the Brauer-Manin obstruction.

The theorem in this paper is entirely concerned with (i); the equivalence of the obstruction in the theorem with the Brauer-Manin one has already been proved in a much more general context in [1], §2.6b and Chapter 3.

If one does not assume Schinzel's Hypothesis, little is known. The only promising-looking line of attack is through the geometry of the universal torseurs on \mathcal{Y} ; and these are much easier to study when \mathcal{Y} has the special form

$$U^2 - cV^2 = P(W) \tag{1}$$

where c is a non-square in k and P(W) is a separable polynomial in k[W]. By writing W = X/Y we can take the solubility of (1) into the equivalent (though ungeometric) problem of the solubility of

$$U^2 - cV^2 = f(X, Y)$$
(2)

in k, where f is homogeneous of even degree; here deg f is $1 + \deg P$ or deg P. The simplest non-trivial case is that of Châtelet surfaces, when P(W) has degree 3 or 4; in this case the conjecture was proved in [2]. The object of this paper is to prove the conjecture when deg f = 6 and $f = f_4 f_2$ over k, where deg $f_4 = 4$ and deg $f_2 = 2$.

Until the statement of the main theorem, we make no assumption about (2) other than that f(X, Y) has even degree n and no repeated factor. After multiplying X, Y by suitable integers in k, we can assume that

$$f(X,Y) = a \prod_{1}^{n} (X + \lambda_i Y)$$

where a is an integer in k and the λ_i are integers in \bar{k} ; the λ_i form complete sets of conjugates over k. For convenience we write $\gamma = \sqrt{c}$. We can assume that γ does not lie in any $k(\lambda_i)$; for otherwise f(X,Y) would have a nontrivial factor of the form $F^2 - cG^2$ with F, G in k[X,Y] and we could instead consider the simpler equation

$$U^{2} - cV^{2} = g(X, Y) = f(X, Y)/(F^{2} - cG^{2}).$$

We can clearly also assume that the λ_i are all distinct; for otherwise we can remove a squared factor from f(X, Y) and reduce to a simpler problem

Rational points on some pencils of conics with 6 singular fibres

which has already been solved in [2]. To avoid trivialities, we shall also rule out solutions for which each side of (2) vanishes.

Let a_1, \ldots, a_h be a set of representatives for the ideal classes in k; then it is enough to look for solutions u, v, x, y of (2) for which x, y are integers whose highest common factor is some a_m . (To move from rational to integral solutions may appear unnatural; but in fact it greatly simplifies the argument which follows, because it means that our intermediate equations do not have to be homogeneous.)

LEMMA 1.— There is a finite computable list of n-tuples $(\alpha_1^{(r)}, \ldots, \alpha_n^{(r)})$ not depending on u, v, x, y, where $\alpha_i^{(r)}$ is in $k(\lambda_i)$ and conjugacy between λ_i and λ_j extends to conjugacy between $\alpha_i^{(r)}$ and $\alpha_j^{(r)}$, with the following property. If (2) has a solution with x, y integers whose highest common factor is some a_m , then for some r the system

$$u_i^2 - cv_i^2 = \alpha_i^{(r)}(x + \lambda_i y) \quad (1 \le i \le n)$$
(3)

has solutions with u_i, v_i in $k(\lambda_i)$ for each *i*.

Proof. — We postulate once for all that the manipulations which follow are to be carried out in such a way as to preserve conjugacy. A prime factor \mathfrak{p} of $x + \lambda_i y$ in $k(\lambda_i)$ which also divides $f(x, y)/(x + \lambda_i y)$ must divide

$$a\prod_{j\neq i}(-\lambda_i y + \lambda_j y) = y^5 a\prod_{j\neq i}(\lambda_j - \lambda_i),$$

and for similar reasons it must divide

$$a\prod_{j\neq i}(\lambda_i x - \lambda_j x) = -x^5 a\prod_{j\neq i}(\lambda_j - \lambda_i).$$

Hence it divides $aa_m \prod_{j \neq i} (\lambda_j - \lambda_i)$ and must therefore belong to a finite computable list; and any prime ideal not in this list which divides some $x + \lambda_i y$ to an odd power must split or ramify in $k(\lambda_i, \gamma)/k(\lambda_i)$. As ideals, $(x + \lambda_i y) = \mathbf{b}_i \mathbf{c}_i$ where \mathbf{b}_i only contains the prime ideals which either lie in the finite computable list above or ramify in $k(\lambda_i, \gamma)/k(\lambda_i)$, and every prime ideal which occurs to an odd power in \mathbf{c}_i must split in $k(\lambda_i, \gamma)/k(\lambda_i)$. By transferring squares from \mathbf{b}_i to \mathbf{c}_i we can assume that each \mathbf{b}_i is square-free. Each \mathbf{b}_i belongs to a finite list independent of x, y, and conorm $\mathbf{c}_i = \mathfrak{C}_i \cdot \sigma \mathfrak{C}_i$ where \mathfrak{C}_i is an ideal in $k(\lambda_i, \gamma)$ and σ is the non-trivial automorphism of $k(\lambda_i, \gamma)$ over $k(\lambda_i)$. Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_H$ be a set of representatives for the ideal classes in $k(\lambda_i, \gamma)$; then for some $\mathfrak{A}^{(i)}$ from this list $\mathfrak{A}^{(i)}\mathfrak{C}_i$ is principal, say $\mathfrak{A}^{(i)}\mathfrak{C}_i = (\xi_i + \gamma \eta_i)$ with ξ_i, η_i in $k(\lambda_i)$. Thus

$$(\xi_i^2 - c\eta_i^2) = \mathfrak{b}_i^{-1}\mathfrak{A}^{(i)}\sigma\mathfrak{A}^{(i)}(x + \lambda_i y)$$

- 333 -

Sir Peter Swinnerton-Dyer

as ideals. This implies $\xi_i^2 - c\eta_i^2 = \alpha_i(x + \lambda_i y)$ where the ideal (α_i) belongs to a finite computable list; and as we can clearly vary α_i by any squared factor, this ensures the same property for α_i .

Strictly speaking, the elements of our list consist of equivalence classes of *n*-tuples (where the formulation of the equivalence relation is left to the reader); but we shall need to fix which representatives we choose. However, in what follows we shall also need to know that we can take the u_i, v_i to be integers without thereby imposing an uncontrolled extra factor in the $\alpha_i^{(r)}$. For this purpose we need the following result:

LEMMA 2. — Let K be an algebraic number field and C a non-square in \mathfrak{O}_K . Then there exists A = A(K,C) in \mathfrak{O}_K such that if D is in \mathfrak{O}_K with

$$U^2 - CV^2 = D \tag{4}$$

soluble in K, and if $A^2|D$, then (4) is soluble with U, V in \mathfrak{O}_K .

Proof. — Write $L = K(\sqrt{C})$, let σ be the non-trivial automorphism of L/K and let $\mathfrak{A}_1, \ldots, \mathfrak{A}_H$ be a set of integral representatives for the ideal classes of L. Let d be any non-zero integer of K such that $u^2 - Cv^2 = d$ for some u, v in K, and write

$$(u+C^{1/2}v)=\mathfrak{m}/\mathfrak{n}$$

where $\mathfrak{m}, \mathfrak{n}$ are coprime ideals in L. Thus $(u - C^{1/2}v) = \sigma \mathfrak{m}/\sigma \mathfrak{n}$, so that $\sigma \mathfrak{n}|\mathfrak{m}$. Choose r so that $\mathfrak{A}_r\mathfrak{n}$ is principal — say equal to (B). If u_1, v_1 are defined by

$$u_1 + C^{1/2}v_1 = B(u + C^{1/2}v)/\sigma B$$

then the denominator of $u_1 + C^{1/2}v_1$ divides $\sigma \mathfrak{A}_r$ and $u_1^2 - Cv_1^2 = d$. If A in K is divisible by $2C^{1/2}\mathfrak{A}_r \cdot \sigma \mathfrak{A}_r$ for every r, then $A^2d = (Au_1)^2 - C(Av_1)^2$ where Au_1 and Av_1 are integers.

Since we can multiply each $\alpha_i^{(r)}$ by the square of any nonzero integer in $k(\lambda_i)$, subject to the preservation of conjugacy, we can assume that $\alpha_i^{(r)}$ is divisible by $(A(k(\lambda_i), c))^2$ in the notation of Lemma 2; thus if (3) is soluble at all for given integers x, y then it is soluble in integers. Moreover

$$\prod_{i=1}^{n} \alpha_i^{(r)} = \left(a \prod_{i=1}^{n} (u_i^2 - cv_i^2) \right) / (u^2 - cv^2),$$

so that $\prod \alpha_i^{(r)} = a(u_{(r)}^2 - cv_{(r)}^2)$ for some $u_{(r)}, v_{(r)}$ in k. Conversely, any solution of (3) gives rise to a solution of (2); and for this we do not require any condition on (x, y).

Rational points on some pencils of conics with 6 singular fibres

If the system (3) has solutions at all, it has solutions for which conjugacy between λ_i and λ_j extends to conjugacy between u_i, v_i and u_j, v_j ; such solutions have the form

$$u_i = \lambda_i^{n-1} \xi_0 + \ldots + \xi_{n-1}, \quad v_i = \lambda_i^{n-1} \eta_0 + \ldots + \eta_{n-1}$$
(5)

for some ξ_{ν}, η_{ν} in k. Thus we can replace (3) by the system

$$(\lambda_i^{n-1}X_0 + \ldots + X_{n-1})^2 - c(\lambda_i^{n-1}Y_0 + \ldots + Y_{n-1})^2 = \alpha_i^{(r)}(X + \lambda_i Y) \quad (6)$$

which is to be solved in k. If we eliminate X, Y these become n-2 homogeneous quadratic equations in 2n variables, which give a variety $\mathcal{Y}^{(r)}$ defined over k. In the special case n = 4 it was shown in [2], §7 that the $\mathcal{Y}^{(r)}$ are factors of the universal torseurs for (1); and the same argument works for all even n > 2. However, we shall not need to know this.

In the following theorem all the statements about (2) can be trivially translated into statements about (1).

THEOREM 1. — Suppose that n = 6 and that f(X, Y) in (2) has the form

$$f(X,Y) = f_4(X,Y)f_2(X,Y)$$
(7)

where f_4, f_2 are defined over k and have degrees 4, 2 respectively. Assume also that f(X,Y) has no repeated factor. If there is a $\mathcal{Y}^{(r)}$ which is soluble in every completion of k then that $\mathcal{Y}^{(r)}$ is soluble in k; and if this holds for some $\mathcal{Y}^{(r)}$ then (2) contains a Zariski dense set of points defined over k.

Proof. — We first rewrite the equations for $\mathcal{Y}^{(r)}$ in a form which makes better use of the decomposition (7). We can suppose that the linear factors of f_4 are the $X + \lambda_i Y$ with i = 1, 2, 3, 4. The system (6) is equivalent to (3); but instead of (5) we now make the substitution

$$u_i = \lambda_i^3 \xi_0 + \ldots + \xi_3, \qquad v_i = \lambda_i^3 \eta_0 + \ldots + \eta_3 \qquad (i = 1, 2, 3, 4), \\ u_i = \lambda_i \xi_4 + \xi_5, \qquad v_i = \lambda_i \eta_4 + \eta_5 \qquad (i = 5, 6)$$

in (3). Correspondingly we replace (6) by

$$U_i^2 - cV_i^2 = \alpha_i^{(r)}(X + \lambda_i Y) \qquad (i = 1, 2, 3, 4), \quad (8)$$
$$(\lambda_i X_4 + X_5)^2 - c(\lambda_i Y_4 + Y_5)^2 = \alpha_i^{(r)}(X + \lambda_i Y) \qquad (i = 5, 6), \quad (9)$$

where we have written

$$U_i = \lambda_i^3 X_0 + \ldots + X_3, \ V_i = \lambda_i^3 Y_0 + \ldots + Y_3 \quad (i = 1, 2, 3, 4).$$

By eliminating X, Y between the four equations (8), we obtain two homogeneous quadratic equations in the eight variables U_i, V_i ; we treat these as defining a projective variety $\mathcal{X}_1 \subset \mathbf{P}^7$. The U_i, V_i are not defined over k, but it is clear how $\operatorname{Gal}(\bar{k}/k)$ acts on them.

We can now outline the proof of the theorem. It falls naturally into three steps.

- (i) \mathcal{X}_1 contains a large enough supply of lines defined over k.
- (ii) We can choose a Zariski dense set of lines each of whose inverse images in $\mathcal{Y}^{(r)}$ is everywhere locally soluble.
- (iii) $\mathcal{Y}^{(r)}$ contains a Zariski dense set of points defined over k.

The map $\mathcal{Y}^{(r)} \to \mathcal{Y}$ then gives the theorem.

By hypothesis, \mathcal{X}_1 has points in every completion of k; hence as in [2], Theorem A, there is a point P_0 in $\mathcal{X}_1(k)$, and we can take P_0 to be in general position on \mathcal{X}_1 . Indeed, we have weak approximation on \mathcal{X}_1 because \mathcal{X}_1 contains two conjugate \mathbf{P}^3 given by

$$X_i \pm \gamma Y_i = 0$$
 $(i = 1, 2, 3, 4)$

for either choice of sign, and these have no common point. To a general k-point P of \mathcal{X}_1 we can in an infinity of ways find a k-plane which contains P_0 and P and which meets both these \mathbf{P}^3 ; for we need only choose a k-point P' on PP_0 and note that since P' does not lie on either \mathbf{P}^3 there is a unique transversal from P' to the two \mathbf{P}^3 . Conversely, a general k-plane through P_0 which meets both these \mathbf{P}^3 will meet \mathcal{X}_1 in just one more point, which must therefore be defined over k. In this way we obtain a map $\mathbf{P}^6(k) \to \mathcal{X}_1(k)$ which is surjective, and this implies weak approximation.

Now let Λ_0 , which is a \mathbf{P}^5 , be the tangent space to \mathcal{X}_1 at P_0 , and write $\mathcal{X}_2 = \mathcal{X}_1 \cap \Lambda_0$, so that \mathcal{X}_2 is a cone whose vertex is P_0 and whose base \mathcal{X}_3 is a Del Pezzo surface of degree 4. (The fact that there are 16 lines on a nonsingular Del Pezzo surface, and the incidence relations between them, can be read off from [4], Theorem 26.2.) We can give a rather explicit description of \mathcal{X}_3 , and in particular we can identify the 16 lines on it, which turn out to be distinct. Drawing on Cayley's exhaustive classification of singular cubic surfaces, a sufficiently erudite reader can derive a painless proof that \mathcal{X}_3 is actually nonsingular. (What we actually use is the much weaker statement that \mathcal{X}_3 is absolutely irreducible and not a cone, which is not hard to verify.) For \mathcal{X}_2 contains the line which is the intersection of

$$U_i - \epsilon_i \gamma V_i = 0 \quad (i = 1, 2, 3, 4)$$
 (10)

with Λ_0 , where each ϵ_i is ± 1 . (This intersection is proper because P_0 is in general position.) We denote this line by $L^*(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4)$ and its projection onto \mathcal{X}_3 by $L(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4)$. The latter clearly meets the four lines which are obtained by changing just one sign, because this already happens for the corresponding lines in \mathcal{X}_2 ; so by symmetry the fifth line which it meets must be obtained by changing all four signs. This can be checked directly; for if we temporarily drop the notation of (3) and write

$$P_0 = (u_1, v_1, u_2, v_2, u_3, v_3, u_4, v_4) \text{ in } \mathcal{X}_0 \subset \mathbf{P}^7,$$

then the join of the two points $(\epsilon_1 cv_1 \pm \gamma u_1, \epsilon_1 u_1 \pm \gamma v_1, ...)$ passes through P_0 , and each point lies on the corresponding $L^*(\pm \epsilon_1, \pm \epsilon_2, \pm \epsilon_3, \pm \epsilon_4)$. Since

$$u_i(\epsilon_i c v_i \pm \gamma u_i) - c v_i(\epsilon_i u_i \pm \gamma v_i) = \pm \gamma (u_i^2 - c v_i^2)$$

and the equations for \mathcal{X}_1 are given by the vanishing of linear combinations of the $U_i^2 - cV_i^2$, these two points also lie on Λ_0 . The point

$$P_1 = (\epsilon_1 c v_1, \epsilon_1 u_1, \epsilon_2 c v_2, \epsilon_2 u_2, \epsilon_3 c v_3, \epsilon_3 u_3, \epsilon_4 c v_4, \epsilon_4 u_4),$$

lies on the join of these two points; P_1 is distinct from P_0 unless P_0 lies on the \mathbf{P}^3 given by (10) or the \mathbf{P}^3 derived from it by changing the sign of γ . Because P_0 is in general position, we can assume that neither of these happens. Now a straightforward calculation, using the fact that we can describe \mathcal{X}_1 by equations which express $U_1^2 - cV_1^2$ and $U_2^2 - cV_2^2$ as linear combinations of $U_3^2 - cV_3^2$ and $U_4^2 - cV_4^2$, shows that P_1 is nonsingular on \mathcal{X}_2 unless P_0 lies on one of 12 lines, a typical one of which is given by

$$U_1 = V_1 = U_2 = V_2 = 0, \ U_3 = \epsilon_3 \gamma V_3, \ U_4 = -\epsilon_4 \gamma V_4.$$

Under the same condition, the point induced on \mathcal{X}_3 is nonsingular.

The lines L(++++) and L(---) are defined over $k(\gamma)$ and conjugate over k; thus their intersection is defined over k and \mathcal{X}_3 does contain a point defined over k. Moreover the $u_i^2 - cv_i^2$ cannot all vanish because γ is not in any $k(\lambda_i)$; so P_1 is nonsingular on \mathcal{X}_2 and k-points are Zariski dense on \mathcal{X}_3 . (See [4], Theorems 30.1 and 29.4.) Henceforth $P_2 \neq P_0$ will always denote a point on \mathcal{X}_2 defined over k and P_3 will denote the corresponding point on \mathcal{X}_3 .

Once we have chosen P_2 , the general point of the line P_0P_2 is given by setting the X_i, Y_i for i = 0, 1, 2, 3 equal to linear forms in Z_1, Z_2 ; and we can suppose that P_0 corresponds to (1,0) and P_2 to (0,1). The equations for \mathcal{X}_1 are then satisfied identically, and (8) expresses X, Y as quadratic forms in Z_1, Z_2 . There remain the equations (9), which now take the form

$$(\lambda_i X_4 + X_5)^2 - c(\lambda_i Y_4 + Y_5)^2 = \phi_i(Z_1, Z_2) \quad (i = 5, 6)$$
(11)

- 337 -

Sir Peter Swinnerton-Dyer

for certain quadratic forms ϕ_5 , ϕ_6 . In view of the remarks in the previous paragraph we can certainly assume that ϕ_5 , ϕ_6 are linearly independent and each has rank 2. We need to check that we can choose the line P_0P_2 so that the system (11) is everywhere locally soluble. This is of course the crucial step in the proof of the Theorem; but in order not to disrupt the flow of the argument, we postpone the proof of it and of an auxiliary result to Lemma 3 below. Given this, we would like to conclude the argument by appealing to Theorem A of [2]; but unfortunately we are in the exceptional case (E₅) of that theorem. Some discussion of this exceptional case can already be found in the literature (for example in [2]); but it is not clear that any published result meets our needs. We therefore proceed as follows.

Suppose first that λ_5, λ_6 are in k and write

$$U_i = \lambda_i X_4 + X_5, \ V_i = \lambda_i Y_4 + Y_5 \ (i = 5, 6).$$

The equation (11) for i = 5 is $U_5^2 - cV_5^2 = \phi_5(Z_1, Z_2)$, which is everywhere locally soluble, and therefore soluble by the Hasse-Minkowski theorem. Its general solution is given by homogeneous quadratic forms in three variables W_1, W_2, W_3 . The equation (11) with i = 6 now reduces to

$$U_6^2 - cV_6^2 = g(W_1, W_2, W_3)$$
(12)

where g is quartic. This is everywhere locally soluble; so all we have to do is to set W_3 equal to $e_1W_1 + e_2W_2$ where e_1, e_2 are integers in k such that

$$U_6^2 - cV_6^2 = g(W_1, W_2, e_1W_1 + e_2W_2)$$
(13)

is everywhere locally soluble and has no Brauer-Manin obstruction. This is not difficult. Let S consist of the places in k which are either infinite or divide 6c or either of the polynomials $g(W_1, 0, W_3)$ or $g(0, W_2, W_3)$; by means of a linear transformation on the W_i if necessary, we can assume that neither of these expressions vanishes identically and hence S is finite. Solubility of (13) at the places in S can be ensured by local conditions on e_1, e_2 . Choose e_1 to satisfy all these local conditions and also $g(1, 0, e_1) \neq 0$. For the local solubility of (13) all we now have to consider are the primes in S and the primes \mathfrak{p} which divide $g(1, 0, e_1)$. For the former, we need only impose local conditions on e_2 ; for the latter it is enough to ensure that $\mathfrak{p} \/ g(0, 1, e_2)$, which we can do because Norm $\mathfrak{p} > 3$. Finally, $g(W_1, W_2, W_3)$ is the product of two absolutely irreducible quadratic forms defined over \overline{k} which correspond to the linear factors of ϕ_6 ; so it is irreducible over k by Lemma 3. By Hilbert irreducibility we can ensure that $g(W_1, W_2, e_1W_1 + e_2W_2)$ is irreducible over k; so the Châtelet equation (13) is soluble, by Theorem B of [2].

If instead λ_5, λ_6 are not in k, it follows from Lemma 3 and the linear independence of ϕ_5 and ϕ_6 that $\phi_5\phi_6$ is irreducible over k. Hence (11) is

Rational points on some pencils of conics with 6 singular fibres

soluble in k by Theorem 12.1 of [2]. The reader can easily check that the solutions thus constructed are in general position, and therefore Zariski dense on (2).

All that remains to do is to prove the following:

LEMMA 3. — If $\mathcal{Y}^{(r)}$ is everywhere locally soluble there are lines P_0P_2 such that (11) is everywhere locally soluble and $\phi_i(Z_1, Z_2)$ is irreducible over $k(\lambda_i)$ for i = 5, 6.

Proof. — We note first that in general ϕ_i is irreducible over $k(\lambda_i)$. For if we take P_2 to be P_1 and P_0, P_1 to have Z-coordinates (1,0), (0,1) respectively, each $U_i^2 - cV_i^2$ with i = 1, 2, 3, 4 is a multiple of $Z_1^2 - cZ_2^2$; hence the same is true of X and Y, and therefore of ϕ_5 and ϕ_6 . The general assertion now follows from Hilbert's Irreducibility Theorem.

The main complication in the proof of this Lemma is that we cannot assume weak approximation on \mathcal{X}_3 ; indeed weak approximation is probably not even true, since the Brauer group of \mathcal{X}_3 is non-trivial. (See [5].) Let S_1 be a finite set of places in k containing the infinite places, all small primes and all primes dividing 2c, any a_m , the discriminant of f or any of the $\alpha_i^{(r)}$. Then we can choose P_0 to be in the image of $\mathcal{Y}^{(r)}(k_v)$ under the map $\mathcal{Y}^{(r)} \to \mathcal{X}_1$ for each v in \mathcal{S}_1 , by weak approximation on \mathcal{X}_1 . Denote by u_i, v_i, x, y the values of U_i, V_i, X, Y at P_0 ; these values depend on the particular coordinate representation of P_0 which we choose, so that we can still multiply the u_i, v_i by an arbitrary $\mu \neq 0$ in k and multiply x, y by μ^2 . We can therefore ensure that x, y are integers and that the ideal (x, y) is not divisible by the square of any prime ideal outside S_1 . We then re-choose the u_i, v_i for i = 1, 2, 3, 4 to satisfy (8) and be integral, which we can do by the remark immediately after the proof of Lemma 2. This of course alters P_0 , but since it leaves x, y unchanged the equations (9) remain locally soluble at every place in S_1 . Because the old P_0 was in general position on \mathcal{X}_1 , we can assume that the right hand sides of the two equations (9) do not vanish at P_0 .

We do not know the quadratic forms ϕ_5 and ϕ_6 until we have chosen P_2 . But the values of $\phi_5(1,0)$ and $\phi_6(1,0)$ as elements of k^*/k^{*2} only depend on P_0 , for they are simply the values of the right hand sides of the two equations (9) at P_0 . We can therefore properly involve these values in the argument in advance of the choice of P_2 . We now have local solubility of (11) for i = 5, 6 for $Z_2 = 0$ except perhaps at primes which are not in S_1 but which divide $\phi_5(1,0)\phi_6(1,0)$; let S_2 be the finite set of such primes. We can delete from S_2 any primes for which c is a quadratic residue, for (11) is certainly soluble at such primes. To prove the Lemma, we need only show that we can choose P_2 so that no prime \mathfrak{p} in \mathcal{S}_2 divides $\phi_5(0,1)\phi_6(0,1)$.

Now let \mathfrak{p} be in S_2 and \mathfrak{P} be any prime ideal in $k(\lambda_1, \ldots, \lambda_4, \gamma)$ which divides \mathfrak{p} , and use a tilde to denote reduction $\operatorname{mod} \mathfrak{P}$; we have $\mathfrak{P} \| \mathfrak{p}$ because all the primes which ramify lie in S_1 . The two \mathbf{P}^3 given by $U_i \pm \tilde{\gamma} V_i = 0$ (i = 1, 2, 3, 4) are also given by $X_i \pm \tilde{\gamma} Y_i = 0$ (i = 1, 2, 3, 4); so if \tilde{P}_0 lies on either of them then $\tilde{\gamma}$ would be equal to the reduction $\operatorname{mod} \mathfrak{P}$ of the value of $\mp X_i/Y_i$ at P_0 . Since the latter is an element of k, this would mean that c would be a quadratic residue $\operatorname{mod} \mathfrak{p}$ — a case which we have already ruled out. Again, if for example $\tilde{u}_1 = \tilde{v}_1 = \tilde{u}_2 = \tilde{v}_2 = 0$ then x, y would be divisible by \mathfrak{P}^2 and hence by \mathfrak{p}^2 ; and this too we have ruled out. The calculations following (10) now show that \tilde{P}_1 is nonsingular on $\tilde{\mathcal{X}}_2$, where P_1 is as in those calculations.

At most one pair of \tilde{u}_i, \tilde{v}_i vanish; if there is such a pair, we can suppose it is given by i = 4. The equations for $\tilde{\mathcal{X}}_2$ are

$$U_1^2 - \tilde{c}V_1^2 = \text{homogeneous quadratic form in } U_3, V_3, U_4, V_4, \qquad (14)$$
$$U_1\tilde{u}_1 - \tilde{c}V_1\tilde{v}_1 = \text{linear form in } U_3, V_3, U_4, V_4,$$

and two similar ones involving U_2 and V_2 . The equation (14) is equivalent to the vanishing of a quadratic form of rank 6, so it cannot have a hyperplane section which is not absolutely irreducible; and it now follows easily that $ilde{\mathcal{X}}_2$ is absolutely irreducible. The projection from $\tilde{\mathcal{X}}_2$ to the \mathbf{P}^3 with coordinates U_3, V_3, U_4, V_4 is generically onto. Hence there are at most $O(q^2)$ points in $\tilde{\mathcal{X}}_2(\mathbf{F}_q)$ for which the right hand side of (9) vanishes for i = 5 or i = 6. The implied constant here, like λ below, is absolute because it depends only on the degrees of the various maps and varieties involved. Now let P be the point on \mathcal{X}_3 corresponding to P_1 on \mathcal{X}_2 ; thus P is the intersection of two lines on \mathcal{X}_3 . We have already shown that \tilde{P} is nonsingular for all the p which still concern us. The construction in the proof of [4], Theorem 30.1 specifies a non-constant map $\psi: \mathbf{P}^1 \to \mathcal{X}_3$; and the reduction mod \mathfrak{p} of the image of ψ is obtained by carrying out the corresponding construction using $\tilde{\psi}$ and \mathcal{X}_3 , so this image has good reduction. Hence there is a point Q in the image of ψ , defined over k and such that \tilde{Q} is nonsingular on $\tilde{\mathcal{X}}_3$ and does not lie on any of the lines of $\tilde{\mathcal{X}}_3$. Repeating this process using this time the construction in the proof of [4], Theorem 29.4, we obtain a map $\mathbf{P}^2 \to \mathcal{X}_3$ which has good reduction mod p for all relevent p. This lifts back to a map $\mathbf{P}^3 \to \mathcal{X}_2$ which is generically onto and has good reduction mod p for all relevent p. Hence there exists an absolute constant $\lambda > 0$ such that $\tilde{\mathcal{X}}_2$ has at least λq^3 points which can be lifted back to points of $\tilde{\mathcal{X}}_0(\mathbf{F}_q)$. Provided that q is large enough, which we ensure by putting all small primes into S_1 ,

we can choose such a point \tilde{P}_2 for which the right hand sides of (9) for i = 5and i = 6, reduced mod \mathfrak{p} , do not vanish. We lift this \tilde{P}_2 back to \tilde{Q} on $\tilde{\mathcal{X}}_0$. But we have weak approximation on \mathcal{X}_0 . Hence we can choose a rational point Q on \mathcal{X}_0 whose reduction mod \mathfrak{p} is \tilde{Q} for each of the finitely many primes in \mathcal{S}_2 . If we choose $P_2 = \phi(Q)$ this will satisfy all our conditions.

I am indebted to Jean-Louis Colliot-Thélène and Alexei Skorobogatov for their comments on earlier drafts.

Bibliography

- COLLIOT-THÉLÈNE J.-L. and SANSUC J.-J., La descente sur les variétés rationnelles II, Duke Math. J. 54 (1987), 375-492.
- [2] COLLIOT-THÉLÈNE J.-L., SANSUC J.-J. and Sir Peter SWINNERTON-DYER, Intersections of two quadrics and Châtelet surfaces, J. reine angew. Math. 373 (1987), 37-107 and 374 (1987), 72-168.
- [3] COLLIOT-THÉLÈNE J.-L. and Sir Peter SWINNERTON-DYER, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. reine angew. Math. 453 (1994), 49-112.
- [4] MANIN Y.I., Cubic Forms, algebra, geometry, arithmetic. (2nd edition, North-Holland, 1986)
- [5] Sir Peter SWINNERTON-DYER, The Brauer group of cubic surfaces, Math. Proc. Camb. Phil. Soc. 113 (1993), 449-460.

••