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Rational points on some pencils of conics
with 6 singular fibres(*)

SIR PETER SWINNERTON-DYER(1)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, n° 2, 1999
pp. 331-341

R~SUM~. - Soient k un corps de nombres et c E k non carre. Soient

f4,f2 des polynômes homogènes en X, Y, de degré 4 et 2 respectivement.
On donne des conditions necessaires et suffisantes pour que 1’equation

ait des solutions dans k.

ABSTRACT. - Let k be an algebraic number field, let c be a non-square
in k and let f4 /2 be homogeneous polynomials in X, Y of degrees 4 and
2 respectively. Necessary and sufficient conditions are obtained for the
solubility in k of

Let y -> P 1 be a pencil of conics defined over an algebraic number field
k. It is conjectured that the only obstruction to the Hasse principle on y,
and also to weak approximation, is the Brauer-Manin obstruction; and it
was shown in [3] that this follows from Schinzel’s Hypothesis. Descriptions
of the Brauer-Manin obstruction and of Schinzel’s Hypothesis can be found
in [3]. It is of interest that arguments which show that the Brauer-Manin
obstruction is the only obstruction to the Hasse principle for particular
classes of y normally fall into two parts:
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(i) the proof that some comparatively down-to-earth obstruction is the only
obstruction to the Hasse principle;

(ii) the identification of that obstruction with the Brauer-Manin obstruc-
tion.

The theorem in this paper is entirely concerned with (i); the equivalence
of the obstruction in the theorem with the Brauer-Manin one has already
been proved in a much more general context in ~1 j , § 2.6b and Chapter 3.

If one does not assume Schinzel’s Hypothesis, little is known. The only
promising-looking line of attack is through the geometry of the universal
torseurs on y; and these are much easier to study when y has the special
form

where c is a non-square in k and P(W) is a separable polynomial in k[W].
By writing W = X/Y we can take the solubility of (1) into the equivalent
(though ungeometric) problem of the solubility of

in k, where f is homogeneous of even degree; here deg f is 1 +deg P or deg P.
The simplest non-trivial case is that of Chatelet surfaces, when P(W) has
degree 3 or 4; in this case the conjecture was proved in [2]. The object of
this paper is to prove the conjecture when deg f = 6 and f = f 4 f 2 over k,
where deg f 4 = 4 and deg f 2 = 2.

Until the statement of the main theorem, we make no assumption about
(2) other than that f (X, Y) has even degree n and no repeated factor. After
multiplying X, Y by suitable integers in k, we can assume that

where a is an integer in k and the A; are integers in k; the A; form complete
sets of conjugates over k. For convenience we write "/ = We can assume

that ’Y does not lie in any 1~(aZ); for otherwise f (X, Y) would have a non-
trivial factor of the form F2 - cG2 with F, G in k ~X, Y~ and we could instead
consider the simpler equation

We can clearly also assume that the ~i are all distinct; for otherwise we
can remove a squared factor from f (X, Y) and reduce to a simpler problem



which has already been solved in ~2~ . To avoid trivialities, we shall also rule
out solutions for which each side of (2) vanishes.

Let al , ... , ah be a set of representatives for the ideal classes in 1~; then
it is enough to look for solutions u, v, x, y of (2) for which x, y are integers
whose highest common factor is some am. (To move from rational to in-
tegral solutions may appear unnatural; but in fact it greatly simplifies the
argument which follows, because it means that our intermediate equations
do not have to be homogeneous. )

LEMMA 1. - There is a finite computable list of n-tuples (aI’~~, ... , a~,’~~)
not depending on u, v, x, y, where is in k(a2) and conjugacy between
~Z and a~ extends to conjugacy between and , with the following
property. If (2) has a solution with x, y integers whose highest common factor
is some am, then for some r the system

has solutions with uZ, vZ in J~(~Z) for each i.

Proof. - We postulate once for all that the manipulations which follow
are to be carried out in such a way as to preserve conjugacy. A prime factor
p of x + in k (~Z ) which also divides f(x, y) / (x + aZ y) must divide

and for similar reasons it must divide

Hence it divides aam ~Z) and must therefore belong to a finite
computable list; and any prime ideal not in this list which divides some
x + to an odd power must split or ramify in -y) /k(~i ) As ideals,
(x + A;y) = b;c; where bi only contains the prime ideals which either lie in
the finite computable list above or ramify in k(az, ~y)/k(~i), and every prime
ideal which occurs to an odd power in Ci must split in ~y)/l~(aZ). By
transferring squares from bi to ci we can assume that each bi is square-free.
Each bi belongs to a finite list independent of x, y, and conorm cz = 
where Ci is an ideal in 03B3) and 03C3 is the non-trivial automorphism of

-y) over k(ai). Let 1, ... , H be a set of representatives for the ideal
classes in 1~(~Z, ~y); then for some from this list is principal, say

= (~Z + with ~2 in !S~ (/~Z ) . Thus



as ideals. This implies ~2 - = aZ (x + ai y) where the ideal (aZ ) belongs
to a finite computable list; and as we can clearly vary ai by any squared
factor, this ensures the same property for ai. 0

Strictly speaking, the elements of our list consist of equivalence classes
of n-tuples (where the formulation of the equivalence relation is left to the
reader); but we shall need to fix which representatives we choose. However,
in what follows we shall also need to know that we can take the ui, Vi to be

integers without thereby imposing an uncontrolled extra factor in the .

For this purpose we need the following result:

LEMMA 2. - Let K be an algebraic number field and C a non-square
in D K. . Then there exists A = A(K, C) in D K such that if D is in K with

soluble in K, and if A 21 ~D, then (4) is soluble with U, V in D K .

Proof Write L = let 03C3 be the non-trivial automorphism of
L/K and let 2tl, ... , H be a set of integral representatives for the ideal
classes of L. Let d be any non-zero integer of K such that u2 - Cv2 = d for
some u, v in K, and write

where m, n are coprime ideals in L. Thus (u - = so that
Choose r so that 9~.n is principal say equal to (B). If are

defined by

then the denominator of ui + divides and u1- Cv~ = d. If A in
K is divisible by for every r, then AZd = - 

where Aui and Avi are integers. D

Since we can multiply each by the square of any nonzero integer in

k(Ai), subject to the preservation of conjugacy, we can assume that is

divisible by {A{1~(~Z), c))2 in the notation of Lemma 2; thus if (3) is soluble
at all for given integers x, y then it is soluble in integers. Moreover

so that = ~(~r) " for some in k. Conversely, any
solution of (3) gives rise to a solution of (2); and for this we do not require
any condition on (~,~/).



If the system (3) has solutions at all, it has solutions for which conjugacy
between A; and Àj extends to conjugacy between ui, vi and ; such
solutions have the form

for some in k. Thus we can replace (3) by the system

which is to be solved in k. If we eliminate X, Y these become n - 2 homoge-
neous quadratic equations in 2n variables, which give a variety defined
over k. In the special case n = 4 it was shown in [2], §7 that the y(r) are
factors of the universal torseurs for (1); and the same argument works for
all even n > 2. However, we shall not need to know this.

In the following theorem all the statements about (2) can be trivially
translated into statements about (1). .

THEOREM 1. - Suppose that n = 6 and that f(X, Y) in (2) has the
form

where f4, f2 are defined over k and have degrees 4, 2 respectively. Assume
also that f(X, Y) has no repeated factor. If there is a which is soluble
in every completion of k then that is soluble in k; and if this holds for
some then (2) contains a Zariski dense set of points defined over k.

Proof. We first rewrite the equations for in a form which makes
better use of the decomposition (7). We can suppose that the linear factors
of f4 are the X + 03BBiY with i = 1, 2, 3, 4. The system (6) is equivalent to (3) ;
but instead of (5) we now make the substitution

in (3). Correspondingly we replace (6) by

where we have written

By eliminating X, Y between the four equations (8), we obtain two homo-
geneous quadratic equations in the eight variables Ui, Vi; we treat these as



defining a projective variety Xl C P7. The v are not defined over k, but
it is clear how acts on them.

We can now outline the proof of the theorem. It falls naturally into three
steps.

(i) Xl contains a large enough supply of lines defined over k.

(ii) We can choose a Zariski dense set of lines each of whose inverse images
in y(r) is everywhere locally soluble.

(iii) y(r) contains a Zariski dense set of points defined over k.

The map y(r) -+ y then gives the theorem.

By hypothesis, A~i has points in every completion of k; hence as in [2],
Theorem A, there is a point Po in and we can take Po to be in
general position on Xl. Indeed, we have weak approximation on Xl because
Xl contains two conjugate P3 given by

for either choice of sign, and these have no common point. To a general
k-point P of Xi we can in an infinity of ways find a k-plane which contains
Po and P and which meets both these P3; for we need only choose a k-point
P’ on PPo and note that since P’ does not lie on either P3 there is a unique
transversal from P’ to the two P3. Conversely, a general k-plane through Po
which meets both these P3 will meet Xl in just one more point, which must
therefore be defined over k. In this way we obtain a map P6 (J~) --> 

which is surjective, and this implies weak approximation.

Now let Ao, which is a P5, be the tangent space to Xl at Po, and write
X2 = Xl n Ao, so that X2 is a cone whose vertex is Po and whose base X3 is
a Del Pezzo surface of degree 4. (The fact that there are 16 lines on a non-
singular Del Pezzo surface, and the incidence relations between them, can
be read off from [4], Theorem 26.2. ) We can give a rather explicit description
of X3, and in particular we can identify the 16 lines on it, which turn out to
be distinct. Drawing on Cayley’s exhaustive classification of singular cubic
surfaces, a sufficiently erudite reader can derive a painless proof that X3 is
actually nonsingular. (What we actually use is the much weaker statement
that X 3 is absolutely irreducible and not a cone, which is not hard to verify. )
For X2 contains the line which is the intersection of



with Ao, where each fi is ~1. (This intersection is proper because Po is in
general position.) We denote this line by L*(ei, E2, E3, E4) and its projection
onto X3 by E2 , E3 , E4 ) . The latter clearly meets the four lines which are
obtained by changing just one sign, because this already happens for the
corresponding lines in X2 ; so by symmetry the fifth line which it meets must
be obtained by changing all four signs. This can be checked directly; for if
we temporarily drop the notation of (3) and write

then the join of the two points ,U1 , ~yvl, ...) passes through
Po, and each point lies on the corresponding L* (~E1, ~E2, ~E4) . Since

and the equations for ~i are given by the vanishing of linear combinations
of the these two points also lie on Ao. The point

lies on the join of these two points; Pi is distinct from Po unless Po lies
on the P3 given by (10) or the P3 derived from it by changing the sign of
q. Because Po is in general position, we can assume that neither of these
happens. Now a straightforward calculation, using the fact that we can
describe Xi by equations which express U1 - cV21 and U2 - cvi as linear
combinations of cV23 and U4 - shows that P1 is nonsingular on
X2 unless Po lies on one of 12 lines, a typical one of which is given by

Under the same condition, the point induced on X3 is nonsingular.

The lines L(++++) and L(----) are defined over k(’Y) and conjugate
over k; thus their intersection is defined over k and X3 does contain a point
defined over k. Moreover the uf - cvi cannot all vanish because ’Y is not in
any so Pl is nonsingular on X2 and k-points are Zariski dense on X3 .
(See [4], Theorems 30.1 and 29.4.) Henceforth will always denote
a point on X2 defined over k and P3 will denote the corresponding point on
X3.

Once we have chosen P2, the general point of the line PoP2 is given by
setting the Xi, Yi for i = 0,1, 2, 3 equal to linear forms in Zl, Z2; and we
can suppose that Po corresponds to (1,0) and P2 to (0,1). The equations for
Xl are then satisfied identically, and (8) expresses X, Y as quadratic forms
in Zi, Z2. There remain the equations (9), which now take the form



for certain quadratic forms ~5, ~6. In view of the remarks in the previous
paragraph we can certainly assume that ~5, ~e are linearly independent and
each has rank 2. We need to check that we can choose the line Po P2 so that
the system (11) is everywhere locally soluble. This is of course the crucial
step in the proof of the Theorem; but in order not to disrupt the flow of the
argument, we postpone the proof of it and of an auxiliary result to Lemma
3 below. Given this, we would like to conclude the argument by appealing to
Theorem A of [2] ; but unfortunately we are in the exceptional case (E5) of
that theorem. Some discussion of this exceptional case can already be found
in the literature (for example in [2]); but it is not clear that any published
result meets our needs. We therefore proceed as follows.

Suppose first that A5, A6 are in k and write

The equation (11) for i = 5 is Ul - cVs2 = Z2), which is everywhere
locally soluble, and therefore soluble by the Hasse-Minkowski theorem. Its
general solution is given by homogeneous quadratic forms in three variables
Wl W2, W3. The equation (11) with i = 6 now reduces to

where g is quartic. This is everywhere locally soluble; so all we have to do
is to set W3 equal to e 1 Wl + e2W2 where e1, e2 are integers in k such that

is everywhere locally soluble and has no Brauer-Manin obstruction. This is
not difficult. Let S consist of the places in k which are either infinite or divide
6c or either of the polynomials g(Wl, 0, W3) or g(o, W2, W3); by means of
a linear transformation on the Wi if necessary, we can assume that neither
of these expressions vanishes identically and hence S is finite. Solubility of
(13) at the places in S can be ensured by local conditions on e1, e2. Choose
ei to satisfy all these local conditions and also g ( 1, 0, e I ) ~ 0. For the local
solubility of (13) all we now have to consider are the primes in S and the
primes p which divide g(1 , 0, ei ) . For the former, we need only impose local
conditions on e2 ; for the latter it is enough to ensure that p ~’g(4,1, e2), which
we can do because Norm p > 3. Finally, g (Wl W2, Wg) is the product of
two absolutely irreducible quadratic forms defined over k which correspond
to the linear factors of ~6; so it is irreducible over k by Lemma 3. By Hilbert
irreducibility we can ensure that g ( Wz W2 , e 1 Wl + e2 W2) is irreducible over
k; so the Chatelet equation (13) is soluble, by Theorem B of [2].

If instead A5, A6 are not in k, it follows from Lemma 3 and the linear
independence of ~5 and ~e that ~5 ~6 is irreducible over k. Hence (11) is



soluble in k by Theorem 12.1 of [2]. The reader can easily check that the
solutions thus constructed are in general position, and therefore Zariski
dense on (2).

All that remains to do is to prove the following:

LEMMA 3. - If is everywhere locally soluble there are lines PoP2
such that (1 1) is everywhere locally soluble and Z2) is irreducible over
k(Ài) for i = 5, 6.

Proof. 2014 We note first that in general is irreducible over For if
we take P2 to be Pi and Po, Pl to have Z-coordinates ( 1, o), (0, 1) respec-
tively, each cV2i with i = 1, 2, 3, 4 is a multiple of Zf - cZ22; hence the
same is true of X and Y, and therefore of ~5 and ~6’ The general assertion
now follows from Hilbert’s Irreducibility Theorem.

The main complication in the proof of this Lemma is that we cannot
assume weak approximation on X3; indeed weak approximation is probably
not even true, since the Brauer group of X3 is non-trivial. (See [5].) Let
sl be a finite set of places in k containing the infinite places, all small

primes and all primes dividing 2c, any am, the discriminant of.f or any of
the aZ’’~ Then we can choose Po to be in the image of (kv) under the
map y(r) --~ Xl for each v in Si, by weak approximation on Xi. Denote
by ui, vZ, x, y the voues of Ui, v X, Y at Po; these values depend on the
particular coordinate representation of Po which we choose, so that we can
still multiply the Ui, Vi by an arbitrary ~ ~ 0 in k and multiply x, y by ~2.
We can therefore ensure that x, y are integers and that the ideal (x, y) is not
divisible by the square of any prime ideal outside Sl. We then re-choose the

vi for i = 1, 2, 3, 4 to satisfy (8) and be integral, which we can do by the
remark immediately after the proof of Lemma 2. This of course alters Po,
but since it leaves x, y unchanged the equations (9) remain locally soluble
at every place in Sl. Because the old Po was in general position on Xl , we
can assume that the right hand sides of the two equations (9) do not vanish
at Po.

We do not know the quadratic forms ~5 and ~e until we have chosen P2.
But the values of ~5 ( 1, o) and ~6 ( 1, o) as elements of k* /l~*2 only depend
on Po, for they are simply the values of the right hand sides of the two
equations (9) at Po. We can therefore properly involve these values in the
argument in advance of the choice of P2. We now have local solubility of
(11) for i = 5, 6 for Z2 = 0 except perhaps at primes which are not in Si
but which divide ~5(1, 0)~6(1, o); let s2 be the finite set of such primes. We
can delete from 82 any primes for which c is a quadratic residue, for (11) is



certainly soluble at such primes. To prove the Lemma, we need only show
that we can choose P2 so that no prime p in s2 divides ~5 (0,1 ) ~6 (0,1 } .

Now let p be in ?2 be any prime ideal in ..., a4, ~y} which
divides p, and use a tilde to denote reduction mod ; we have because
all the primes which ramify lie in sl. The two P3 given by Ui db Vi = 0
(i = 1, 2, 3, 4) are also given by Xi ± Yi = 0 (i = 1, 2, 3, 4); so if Po lies
on either of them then y would be equal to the reduction mod of the
value of at Po. Since the latter is an element of k, this would mean
that c would be a quadratic residue mod p - a case which we have already
ruled out. Again, if for example fi = V1 = t2 = v2 = 0 then x, y would
be divisible by and hence by p2; and this too we have ruled out. The
calculations following (10) now show that Pl is nonsingular on X2, where
Pi is as in those calculations.

At most one pair of Vi vanish; if there is such a pair, we can suppose
it is given by i = 4. The equations for X2 are

Uf - V21 = homogeneous quadratic form in U3, V3, U4, V4, (14)

U11 - V11 = linear form in U3, U4, V4,

and two similar ones involving U2 and The equation ( 14) is equivalent to
the vanishing of a quadratic form of rank 6, so it cannot have a hyperplane
section which is not absolutely irreducible; and it now follows easily that X2
is absolutely irreducible. The projection from X2 to the P~ with coordinates
U3, V3, U4, V4 is generically onto. Hence there are at most O(q2) points in
X2 (Fq ) for which the right hand side of (9) vanishes for i = 5 or i = 6. The
implied constant here, like A below, is absolute because it depends only on
the degrees of the various maps and varieties involved. Now let P be the
point on X3 corresponding to P1 on X2 ; thus P is the intersection of two
lines on X3. We have already shown that P is nonsingular for all the p which
still concern us. The construction in the proof of [4], Theorem 30.1 specifies
a non-constant P 1 -~ X3; and the reduction modp of the image
of 03C8 is obtained by carrying out the corresponding construction using ’Ø
and so this image has good reduction. Hence there is a point Q in the
image of ~, defined over k and such that Q is nonsingular on X3 and does
not lie on any of the lines of X3. Repeating this process using this time the
construction in the proof of [4], Theorem 29.4, we obtain a map P2 -~ X3
which has good reduction modp for all relevent p. This lifts back to a map
P~ 2014~ X2 which is generically onto and has good reduction mod p for all
relevent p. Hence there exists an absolute constant A > 0 such that X2 has
at least aq3 points which can be lifted back to points of Xo (Fq ) Provided
that q is large enough, which we ensure by putting all small primes into sI ,
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we can choose such a point P2 for which the right hand sides of (9) for i = 5
and i = 6, reduced modp, do not vanish. We lift this P2 back to Q on Xo .
But we have weak approximation on Xo. Hence we can choose a rational

point Q on Xo whose reduction modp is Q for each of the finitely many
primes in ?2. If we choose P2 = ~(Q) this will satisfy all our conditions.

I am indebted to Jean-Louis Colliot-Thelene and Alexei Skorobogatov
for their comments on earlier drafts.
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