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RESUME. - On considere les systemes hyperboliques de la forme Ut -
Vx = 0, f(U)x = 0. La solution auto-similaire du problème de
Riemann est obtenue comme 1’unique limite des solutions bornees auto-
similaires des systemes qui sont regularises a l’aide d’une viscosite speci-
fique, qui tend vers zero. Cette solution est donnee par des formules ex-
plicites ; on etend ainsi les formules connues au cas d’une fonction de flux
f (~} qui n’est pas localement lipschitzienne.

ABSTRACT. - Hyperbolic systems of the form Ut - Vx = 0, Vt - f(U)x =
0 are considered. A self-similar solution to the Riemann problem is ob-
tained as the unique limit of bounded self-similar solutions to systems
regularized by means of a vanishing viscosity of special form. This solu-
tion is given by explicit formulae, which extend the known ones to the
case of non-Lipschitz flux function f ( ~ } .
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0. Introduction

Consider the Riemann problem for a so-called p-system, i.e. the initial-
value problem

The flux function f : : 1R H R is assumed to be continuous and strictly
increasing.

In the case of piecewise smooth flux function the problem (1),(2) was
treated by L.Leibovich, [9] (cf. also [4] and references therein). By analyzing
the wave curves on the plane (u, v) it has been shown that a self-similar
distribution solution that is consistent with a certain admissibility criterion
(cf. B.Wendroff, [12] ; also I.Gelfand, [6] and S.Kruzhkov, [8] for the original
idea carried out in the case of scalar conservation laws) may be explicitly
constructed through convex and concave hulls of the flux function f. It has
been noticed by C.Dafermos in [5] that the same solution satisfies the wave
fan admissibility criterion, i.e., it can be obtained as limit of self-similar
viscous approximations as viscosity goes to 0. Here we follow this last idea.

Let introduce some notation. For given [a, b] C IR and f u E [a, b] ’2014~

R continuous, the convex hull of f on [a, b] is the function u E [a, b] ~

sup ~(u) ~ ~ is convex and ~ ~ f on [a, b]}. Respectively, the concave hull
of f on [a, b~ is the function u E [a, b~ inf ~(u) ~ ~ is concave and ~ >

f on [~,6] ~. . Take uo in R; by F+ ( ~; Uo) denote the convex hull of f on
~uo, u+~ if uo  u+, and the concave hull of f on ~u+, uo~ if uo > u+.

Replacing u+ by n-., define F_ ( ~; uo ) in the same way. Let shorten F~ (-; uo )
to F~ when no confusion can arise.

Since f is strictly increasing, the inverse of , denoted by ,

is well defined in the graph sense as function from [0,+oo) to ~uo, u+~ if

uo  u+ (respectively, to [u+, u0] if uo > u+). In the case u0 = u+ let

d~+ - i mean the function on [0, +oo) identically equal to uo. With the
same notation for F-, u- in place of F+, u+ and standing for du~ , which



are non-negative, the self-similar solution of the problem (1),(2) constructed
in [9] may be written as

dU(~’) being regarded as measure; and, for a bijective flux function f, the
value uo is uniquely determined by

In the case of bijective locally Lipschitz continuous flux function f, the
same formulae (3)-(5) were obtained by P.Krejci, I. Straskraba ([7]) for the
unique solution to satisfy their "maximal dissipation" condition. This so-
lution was also shown to be the unique a.e-limit as e --+ 0 of solutions to
Riemann problem for the p-system regularized by means of infinitesimal
parameter 6- > 0, introduced into the flux function f, and the viscosity

( 0~tVxx ).
In this paper a refinement of these results is presented. The techniques

employed are those used by the author while treating the Riemann problemfor a scalar conservation law with continuous flux function (cf. [1, 2]). In the
general case of continuous strictly increasing flux function f, the Riemann
problem (2) for the p-system (1) and the regularized system

are treated. The main result is the following theorem:

THEOREM 1. - Suppose f : 1R, -~ R is increasing and bijective. Then forall u~, E > 0 there exists a unique bounded self-similar distribution
solution (Uê, Vê) of the problem (6), (2).

Besides, as ~ ~. 0, V~) (~) -.~ (U, V) (~) a. e. on IR,, where (U, V) is
given by the formulae (3)-(5), so that (U, V) is a self-similar distribution
solution of the problem (1), (2).



The bijectivity condition is only needed for the existence of solutions
and cannot be omitted (see Remark 7.6 in [7]), though it can be relaxed
(see Remark 2 in Section 3).

The paper is organized as follows. In the first section the problem (6),(2)
is reduced to a pair of boundary-value problems for a second-order ordinary
differential equation on the domains (min{u0, u±}, max{u0, u±}); u0 is a

priori unknown and satisfies an additional algebraic equation. In Section 2
existence, uniqueness and convergence (as 6: --~ 0) results are obtained for
the ODE problem stated in Section 1, with Uo E 1R fixed. Then it is shown
in Section 3 that uo is in fact uniquely determined by the flux function f,
~’, and the Riemann data ~±,~±; finally, Theorem 1 above is proved.

1. Restatement of the problem

We start by fixing ~ > 0. Consider the problem (6),(2) in the class of
bounded distribution solutions (U, V) of (6) such that (U, V)(t, .) tends to
(U, V)(o, ~) in x as t tends to +0 essentially. Moreover, since
both the initial data (2) and the system (6) are invariant under the trans-
formations (t, x) --+ (kt, with k in 1R.+ (here is the reason to introduce
the viscosity with factor t), it is natural to seek for self-similar solutions,
i.e. (U, V) depending solely on the ratio x/t. By abuse of notation, let write
(U, V ) (t, x) = (U, V ) (x/t). Let 03BE denote x/t and use U’, V’ for dV/d03BE
and so on.

LEMMA 1. - A pair of bounded functions (U, V) : 03BE E 1R. H IR2 is a

self-similar distribution solution of (6), (2) if and only if U, and V’
are continuous on IR., the equations

are fulfilled with some constants C,K, and also

Besides, there exist ~~ in IR,+, ~_  g+ such that U, V are strictly mono-
tone on each of (-oo, ~_ ), (~+, +oo), with U’ ~ 0, and U, V are constant
on (~_ ~ ~+) 



Proof. - Let (U, V) be bounded self-similar distribution solution of the
system (6). Then -çU’ - V’ = 0 and -~V’ - f(U)’ = eV" in D’(R);
therefore [~ZU - f (U) + 

~ 

= 2~U in D’(1R). Since U E L°°(IR), it

follows that

with some C in R. Hence one deduce consecutively that E 

U E C(IR,B ~0~) and finally, U E ~0~). Thus for 0 (7) holds.

Now let prove the monotony property stated. For (~_ , ~+ ) take the
largest interval in R containing £ = 0 such that U = U {o) on (~_ , ~+ ) .
For instance, let ç+ be finite and therefore U not constant on (0, +oo) ; sup-
pose U is not strictly monotone on (~+, +oo). Since U’ E C{~+, +oo), it
follows that there exists c > ç+ such that U’ (c) = 0 and U’ is non-zero in
some left neighbourhood of c. For instance, assume U’ > 0 in this neigh-
bourhood. Clearly, there exists a sequence C R increasing to c such
that for all n E the maximum of U’ on c] is attained at the point çn.
Since f is increasing, it follows that  f(U(c)). . Take (7) at the
points 03BE = 03BEn and ç = c; subtraction yields

As n -~ oo, one deduces that ~  0, which is impossible.

Thus U, and consequently V, are indeed monotone on ( -oo, 0) and
(0, +oo); therefore there exist = lim~~~o !7(~). Hence by (10) there
exist which are necessarily zero since U E L°° (1R.). Thus
(10) yields j(U(+O) = f (U(-0)), so that U E C(1R,). Consequently, ~U’ E
C(R), V’ E C(R), and V E C(R). It follows that (7),(8) hold for all ç in R.

The converse assertion, i.e. that (7),(8) imply (6) in the distribution
sense, is trivial. Finally, since U and V are shown to be monotone on 
whenever (7), (8) hold, it is evident that (9) is fulfilled if and only if self-
similar U, V satisfy (2) in L1loc-sense as t ~ 0 essentially. a

Let use this result to obtain another characterisation of self-similar so-
lutions to (6),(2). The idea is to seek for solutions of the same form as in
formulae (3)-(5), substituting F~ by appropriate functions depending on ~.
One thus has to "inverse" (3)-(5).

Set uo := U(O) and consider (7) separately on ( - oo, ~_ ) , {~_ , ~+ ) , and
(~+,-{-oo), where ~~ are defined in Lemma 1. Assume uo 7~ u_, uo 7~ u+.



Let introduce the notation I(a, b) for the interval between a and b in R.
One has = uo for all ç E (~_, ~+); besides, the inverse functions 

~~+~ +~) and U-1 : I (v,o, u_ ) H (-oo, ~_ ) are well defined.
For all u E I(uo,u+) (respectively, u E I(uo,u_)) set

with C taken from (7). The shortened notation ~~(u) will be used for
~~(u; uo) whenever ~, uo are fixed. Now (7) can be rewritten as 
f (U(~)) - ~~(U(~)) for £ E I(~~, ~oo). The reasoning in the proof of
Lemma 1 shows that U is not only monotone, but also U’ is different from 0
outside of j~_ , ~+~ . It follows that for all u in I ( a, b), where a = uo, b = u+
(resp., for all u in I (a, b), where a = uo, b = u_ ), the function ~+ (resp.,
~ _ ) is twice differentiable and satisfies the equation

Hence 03A6+  f (03A6+ > f ) if uo  u+ (if uo > u+), and the same for 03A6_,u_
in place of q,+,u+. ..

Note that one can extend the functions ~+,~_ to be continuous on
I (uo, u+), I ( Uo, u-) respectively, and in this case one has

Indeed, one gets ~~ ( Uo) = f (uo ) directly from (11) and (7). Besides, for
~ E is equal to f (U(~)) - ~~(U(~)), which has finite limits
as 03BE --> ±~ because and 03A6± are convex and bounded on
I ( UO, u~ ) . The limits of ~~U’ (~) cannot be non-zero since U is bounded,
thus one naturally assign ~~ (u~ ) := f (u~ ) .

Now from (8)-(11) it follows that

Note that in the case uo = u+ (uo = u_ ), (12)-(14) formally make
sense, with ~+ defined at u = uo = u+ by f (u+) (resp., with ~_ defined at
u=uo=u_ by f(u-)).



Finally, the reasoning above is inversible. More presisely, for given Uo E
R and ~~(-; uo) E C2(I(uo, u~)) n C(I(uo, ut)) such that (12)-(14) hold,
define U, V by

with ~(-;uo)] ~ (and [$i(.;uo)]’~) taken in the graph sense and equal
to u+ (to u-) identically whenever uo = u+ (uo = u-). Then (U, V) satisfy
(7)-(9). Indeed, U is continuous, ~~.(uo; uo) = uo), and the equation

= f(U(03BE)) - 03A6~±(U(03BE); uo) holds for all 03BE 6 IR±. Hence 03BEU’ e C(]R)and (7) is true. Therefore V, V are continuous and (8),(9) are easily checked.
We collect the results obtained above in the following proposition:
PROPOSITION 1.2014 be fixed. Formulae (15),(16) provide

a one-to-one correspondence between the sets A and B defined by

In fact, it will be shown in Section 3 that A and thus B are one-element or
empty sets.

The resemblance of formulae (3),(4),(5) and (15),(16),(14) permits to
get the convergence result of Theorem 1 if one has convergence of ~~ to F I

2. The problem (12),(13) with fixed domain
Let fix a, b E IR, and consider the equation (12) on the interval lea, b) ,with the boundary conditions as in (13). For instance, suppose a  b.
PROPOSITION 2. - For all continuous strictly increasing f, , ~ > 0, and

a, b E R there exists a unique ~ in C2(I(a, b) ) n C(l(a, b) ) satisfying (12)such that ~(a) = f(a) and ~(b) = f (b).



For f and [a, bJ fixed, let ~~ denote the function ~ from Proposition 2
corresponding to > 0.

PROPOSITION 3. - With the notation above, ~E converge in C[a, b~, as
~ --~ 0, to the convex hull F of the function f on the segment [a, b~ .

Remark 1. - In the case a > b, the corresponding limit is the concave
hull of f on (b, a~ .

The following two assertions will be repeatedly used in the proofs in
Sections 2,3:

LEMMA 2 [Maximum Principle] . - Let ~, ~ E CZ (a, b) nC(a, b~ and sat-
isfy, for all u E (a, b), the equations ~ (u) = G(u, ~ (u), ~ (u) ) and (u) =
H(u, ~(u), respectively, with G, H : (a, b) x R x (0, (0, +oo~ .

a) Assume that G(u, z, w)  H(u, ( , w) for all u E (a, b) such that
~ (u)  W(u) and all z, (, w such that z  (. . Then ~ > ~ on (a, b~ whenever
~ (a) > W(a) and ~ (b) > ~ (b) .

b) Assume that G(u, z, w) _ H(u, z, w), , increases in wand strictly in-
creases in zi let ~(a) = or ~(b) = ~(b). Then (~ - ~) is monotone
on [a, b~ .

Proof. The proof is straightforward. C~

LEMMA 3. Let functions F, Fn, n E be continuous and convex (or
concave) on (a, b~ . Assume that Fn(u) converge to F(u) for all u E (a, b~ .
Then this convergence is uniform on all [c, d] C (a, b) and

a) F’n converge to F a. e. on [a,b];

b) if Fn, F are increasing, then ba Fn(u)du converge to / a F(u)du;
c) let F , F’n 

-1 

denote the graph inverse functions of F, Fn respec-

tively ; then Fn . _1 (~) tends to F _1 (~) for all ~ such that F . _1 is con-
tinuous at the point ~.

Proof. An elementary proof of a),c) is given in (2~ . Besides, the assump-
tions of the Lemma imply that for all b > 0, F~ are bounded uniformly in
n for u E [a + ~, b - ~~ Since, in addition,



uniformly in n E N as 03B4 ~ 0, the conclusion b) follows from the Lebesgue
Theorem. D

Proof of Proposition 2. There is nothing to prove if a = b; let a  b.
Consider the penalized problem

for all u E [a, b~ . Since Gn is continuous in all variables and bounded, the
existence of solution follows for arbitrary boundary data such that ~(a) 
~ (b); in particular, a solution ~n exists such that ~~ (a) = f (a), 
f {b). The Maximum Principle yields that 03A6n decrease to some convex non-
decreasing function 16 on [a, b] as n ~ oo.

Further, there exists a solution ~ of ( 12) on [a, b] with any assigned value
of less than f (a), or any assigned value of less than f (b). In fact,
in the first case one takes = ~{a); in the second case there exists a
solution on the whole of [a, b~ to the equation (12) with the Cauchy data

(fixed) and sufficiently large. By the Maximum Principle 
on [a, b]; therefore + 0) = f (a) and ~{b - 0) = f {b). Consequently ~ is
continuous on [a, bl.

Now if for all [c, d] C (a, b) there exists mo > 0 such that f - ~ > mo on
[c, d], then the functions Gn (u, ~~ (u), (u) ) are bounded uniformly in n E
N for u E [c, d~; indeed, on [c, d~, by convexity, n are uniformly bounded
and converge to 03A6 uniformly, so that 2~03A6n f - 03A6n  M(c, d) for all n large
enough. Hence it will follow by Lemma 3a) and the Lebesgue Theorem that
~ (u) = [c, d~ and consequently ~ E C2 [c, d~ Thus the
existence of solution to problem (12),(13) will be shown.

First let show that ~ (u ~ 0) > 0 for all u > a. It suffices to prove that
t = a, where u := sup u E [a, bl = f {a) . Note that u  b since

= f (b) > f (a). Assume u > a; by the Lebesgue Theorem + = in

some neighbourhood of t. Since 0) = 0, by the uniqueness theorem
for the Cauchy problem ~ is constant in this neighbourhood. Therefore
necessarily ic = b, which is impossible.

Further, by Lemma 3a), (17), and the Fatou Lemma one has E

b). . Hence ~  f and f ~ ~  ~ on (a, b) in measure sense. Now take
[c, d’~ C (a, b) and u E [c, d~; set m := 0. Set A := ~( ~’2 ~ -o) >



0, B := $(d - 0) > 0. For all u E ~~2 ~, u~, f (u) - ~(u)  m + B(u - u) and
~ 0) ~ A since ~ is convex and f increasing. Hence

with some positive constants Kl, K2 depending only on c, d. Thus m >

mo (c, d) > 0 and the proof of existence is complete.

The uniqueness is clear from the Maximum Principle for solutions

of (12). . D

Proof of Proposition 3. Let a  b; take a > 0 and a barrier function

Wa such that o;/2 ~ F - and m(a) > 0 on ~a, b~ . Such a
function can be constructed through the Weierstrass Theorem.

By the Maximum Principle !~ increase as 6 decrease. Therefore there
exists [c, d] inside (a, b) such that for all £ in (0,1), on [a, b] B [c, d~. .

It follows that  C (c, d~ and thus  M(a) on this set

uniformly in c. Now for all 6 less than 2~ a~ one may apply the Maximum
Principle to 03A6~ and hence 0  F - 03A6~  03B1 for all £ small enough. D

3. Solutions of the problem (6),(2) and the proof of Theorem 1

Proposition 2 above implies that for all f , ~, fixed, for all uo G R there

exist unique ~+(~; uo) and ~~ (~; uo) satisfying (12),(13); thus by Proposition
1, for an arbitrary v- in R and v+ obtained from (14), ( U, V) provided by
(15),(16) is a self-similar solution to the Riemann problem (6),(2). Now since
not uo but v+ are given by (2), one needs to find uo in R such that (14)
holds with these assigned values of 

PROPOSITION 4. - a) Assume f (~oo) _ Then for all u~, E R,
~ > 0 there exists a unique uo such that (1 /~) holds, with ~+, ~~ the (unique)
solutions to (1,~), (13).

/201420142014

b) Assume f E Wi locally in R and = Then for

all u±, v± E R and e  ~0 = ~0(u±, v+ - v-) there exists a unique uo such
that (1,~) holds, with the same ~~ .



Let -F±(’; uo) be, as in the Introduction, the convex (concave) hulls of f
on I(uo, ut) according to the sign of (u:r. - uo). Set

It will be convenient to extend ~~ ( ~; uo ), F~ ( ~; uo) to continuous func-
tions on R by setting each of them constant on (-oo, u~ ~~ ] and

+oo) . In the lemma below a few facts needed for the proofs
of Proposition 4 and Theorem 1 are stated.

LEMMA 4. - With the notation above, and uo running through IR,, the
following properties hold.

a) For all u E R and e > 0, uo ~--> not decrease; nor do
uo H ( u; uo ) . .

b) For all u E R and e > 0, u0 ~ sign(u±-u0)03A6~±(u; u0) do not increase;
nor do uo ) .

c) For all 6’ > 0 the maps u0 ~ 03A6~±(.; uo) are continuous for the L°°(1R,)
topology; so do uo H F~{~; uo).

d) For all 6’ ~ 0, uo ~2014~ ~,~ (uo) are continuous and strictly decreasing.

Proof. - Combining the continuity and monotony of f with a),b) of the
Maximum Principle for solutions of (12),(13), one gets a)-c) for ~~. The
same assertions for follow now from Proposition 3 and Lemma 3a); they
can also be easily derived from the definition of convex hull. Finally, d)
results from c), Lemma 3b), b) and the strict monotony of f. 0

Proof of Proposition .~. a) By Lemma 4d), it suffices to prove that

0~(~00) _ Assume the contrary, for instance that = M 

+00.

Consider uo  u+; ~~- is convex, therefore for all uo there exists c =

c(uo) E such that ~+ ( ~; uo ) > 1 on and ~+ (-; uo )  1 on

(uo, c~ By Lemma 4b) c(uo ) increase with uo . Obviously, for all uo, M >
~~+(c; uo) - f(uo)] + [u+ - c]. Set d := u+ - M; clearly, c(uo) > d

for all uo. Considering the functions ~E{~; uo) with uo --> -oo, one obtains a
sequence such that wn satisfy (12) on [d, u+),  1, =

f (u+ ), and finally, ~ -~ (this last holds because  f (uo ) +
M --~ f( -00) + M = -oo as uo --~ -oo). On the other hand, for n large
enough, the unique solution W to the equation ( 12) with the Cauchy data

= 
, (d) = 2 is defined on the whole of [d, u+] which means



that w(u+)  f (u+). Now by b) of the Maximum Principle, (~ - Wn) is

increasing and thus positive. Hence ~~ (u+ )  ~ (u+ )  f (u+ ) which is a
contradiction.

b) Take uo  u+. First suppose f E u+~ and has a finite number of

points of inflexion; denote by F the corresponding convex hull. The segment

[uo, u+] can be decomposed into the three disjoint sets: Mi: 
= u ( ~ b > 0

s.t. F - const on (u - b, u + ~) n ~a, b~ , M2 := u ‘ F(u) = f (u) B M~,
and M3 finite. Using the Cauchy-Schwarz inequality on every (c, d) C Ml,

one gets / = L1+(uo) > / f (u)du.uo uo

In the general case, let proceed with the density argument, choosing a

sequence { f n } such that f ~ are increasing and smooth as above, f ~ -- f

in C~uo, u+~ with fn -- f in Li [uo, u+~ as n -- oo. Denote the convex
hull of fn on [uo , u+] by Fn ; it is easy to see that ~fn -

- 0 as n ~ ~. By Lemma 4b), = uo Fdu,
so that 03940+ (uo) > u+ in the general case as well. Thus 0.°+ (-00) =

+00 by the assumption on f.

Now Proposition 3 and Lemma 3b) imply that for given v+ in R, there

exists ~° = ~° (u~, v+ - v_ ) such that one has 0+ (-L) > ~v_ - v+ ~ (and
in the same way, L1 + (L)  - ( v_ - v+ ( ) for all ~  ~0 whenever L is large

enough. Lemma 4d) yields now the required fact. 0

Finally, here is the proof of the result announced in the Introduction.

Proof of Theorem 1. The existence and uniqueness of a bounded self-

similar distribution solution to the Riemann problem (6),(2) follow imme-

diately from Propositions 1, 2 and 4.

Now let c decrease to 0. Take uo, ~~ (-; corresponding to the unique

solution of (6),(2) in the sense of Proposition 1. Take uo 
a limit point in

11 of Suppose first uok - uo E R, ek -- 0 as k -- oo; let show
that, with the notation as in Lemma 4, ~+(-; uo) converge to F+(-; uo)
in Indeed, take a > 0; ~ uo"~ - uo) for all k large enough.

By Proposition 3 and Lemma 4a), there exists ~o > 0 such that, for 
all

êk  ~o, F’+ (’; uo - a) -- a  ~+ (-; uo - a)  ~+ (-; uok )  ~+ (~ ~ uo + a) ~
F+ (-; uo + a) + a. Thus the required result follows from Lemma 4c) ; clearly,
it also holds for F- in place of ~+ , F+ .



Now by Lemma 3b) t~.°~ (u°)-~-0°_ (uo ) is the limit of ~+ =

v- - v+; hence by Lemma 4d), uo is unique if it is finite. Besides, if for in-
stance uo = -oo, then for all L E R, v- - v+ = +

L~~k (uo’‘ )~ > 0+(L) + L~°_ (L) by Lemma 4d) and Lemma 3b). It is a con-
tradiction ; indeed, it is easy to see that ~~ (L) --~ as L -> -oo.

Thus in fact uo -> uo as e --~ 0, uo E R and (5) holds. Further, let
uo  u~; the other cases are similar and those of uo = u- or uo = u+ are
trivial. For all a > 0 there exists eo = eo(a) > 0 such that for all e  eo,

[uo, u~ ~ C [uo - a, u~ ~ The functions U~ in the statement of Theorem 1 are
given by formula (15), when applied to ~~ (~; uo ) with their natural domains

u~ ~ . Taking for the domains ~u° - a, u~ ~ one does not change UE (~)
0 and e  eo. The same being valid for U given by (3), one may

use the fact, proved above, that ~~~~{~; uo) - F~(~; -"~ ~ as

e - 0, and conclude by Lemma 3c) that U~ (~) -; U(ç) for a.a. ~ E R.
Hence it follows by (4),(16) that V~ ~ V a.e., so that (U, V) given by (3)-
(5) is the unique a.e.-limit of self-similar bounded distribution solutions of
the problem (6),(2). Thus (U, V) is a distribution solution of the Riemann
problem (1),(2). D

Remark 2. - Note that using b) of Proposition 4 instead of a), one gets
a result similar to the Theorem 1 in the case of f E Wi locally in R,

= in fact, the exact condition is the bijectivity of the

functions uo ~ 03940± (uo) for continuous strictly increasing flux function f.
Under each of this conditions the existence of a bounded self-similar solution
of (6),(2) is guaranteed for all e = ~° (u~, v+ - t;-). .

Note. - After this paper had been completed, the author had an op-
portunity to meet Prof. A.E.Tzavaras and get acquanted with his papers on
viscosity limits for the Riemann problem; in particular, in [10] very close re-
sults were obtained for p-systems regularized by viscosity terms of the form

( , without involving the explicit formulae for the limiting
solution.

For results on self-similar viscous limits for general strictly hyperbolic
systems of conservation laws, refer to the survey paper [11] and literature
cited therein. Let only note that the structure of wave fans in self-similar
viscous limits remains the same as in the case of scalar conservation laws

([6, 8]) and in the case of p-systems, where it can be easily observed through
the formulae (3),(4).
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On the other hand, Prof. B.Piccoli turned my attention to Riemann
solvers for hyperbolic-elliptic systems (1) (i.e., the case of non-monotone
f ). The global explicit Riemann solver extends to this case (see Krejci,
Straskraba, [7]); it can be proved, with the techniques used here and in
[1, 2], that this solver is the unique limit of self-similar bounded solutions
to the problem (6),(2).

Precise results on hyperbolic-elliptic p-systems and a discussion of other
viscosity terms will be given in [3], together with a study of self-similar
viscous limits for the corresponding system in Eulerian coordinates.
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