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RESUME. - Dans ce travail, on s’interesse a 1’etude d’un système de
deux equations differentielles non autonomes du second ordre à valeurs
propres et dependant de paramètres. Ce système concerne les solutions de
type ondes progressives pour un système de reaction-diffusion. Ce dernier
decrit la propagation d’une maladie infectieuse au sein d’une population
confinée dans une region donnée; le modèle etudie tient en compte la

presence de sources exterieures possibles. Selon 1’importance relative de
celles-ci, nous posons la question de 1’existence d’ondes progressives au
système de reaction-diffusion correspondant. Nous donnons ensuite une
revue de toutes les situations rencontrees pour lesquelles nous montrons
comment les difficultées mathematiques peuvent etre surmontees. Util-
isant des méthodes topologiques de type Leray-Schauder, nous prouvons
l’existence de solutions fronts d’ondes pour toute vitesse de 1’onde de

propagation.

ABSTRACT. - This work is devoted to the study of parameters dependent
system of two second order non-autonomous ODE’s with eigenvalues. The
system is concerned with the traveling wave solutions to a reaction diffu-
sion system. The latter describes the propagation of an infectious disease
within a population confined in a given region; the model to be dealt with
takes into account the presence of possible external sources. According to
the relative importance of these ones, we address the question of existence
of traveling waves to the corresponding reaction-diffusion system. Then,
we give a survey of all encountered situations for which we show how the
mathematical difficulties may be overcome. Using some topological meth-
ods of Leray and Schauder degree type, we prove existence of traveling
front solutions for any wave speed.

(*) Reçu le 16 fevrier 2000, accepte le 8 juin 2001
(1) > Department of Mathematics, École Normale Superieure, B.P. 92 Kouba, 16050.
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1. Introduction

In this work, we aim to discuss the existence of traveling wave solutions
to a reaction-diffusion system; the latter arises as a model from epidemiology
the kinetic of which is given by the so-called Kermack-McKendrick model

[9]. We consider a population living in a region H C ]Rn and consisting of
two components, one of infectives and the other of susceptibles who are
capable of becoming infected. The spread of an infectious disease through
this population is governed by the following reaction-diffusion equations

with the initial conditions

and the Neumann boundary conditions

where x E > 0. The unknowns u(x, t) and v(x, t) denote the spatial
densities of infectives and susceptibles respectively; the positive functions a
and b refer to the diffusion coefficients while A and  are the removal rate
constants; qi and q2 stand for possible external sources. A, ~c, qi and q2 are

assumed non-negative. The nonlinearity g is supposed to be a regular posi-
tive function; it represents the interaction term or the force of infection. The

special case g(s) = s, q1 = q2 = 0 corresponds to the Kermack-McKendrick
model [9] ; more details on the biological background can be found in [2],
[4] and [12]. We refer the reader to [5], [13] and [14] for the mathematical
investigation of problem ( 1.1 )- ( 1.3) .

For the one-dimensional case, we remind that traveling epidemic waves
of constant shape are particular solutions of (1.1) having the form

here, we have assumed a wave to propagate from right to left (see [1], [7] for
more generalities on traveling waves to reaction-diffusion systems). Then, a
pulse of infectives u moves into a population of susceptibles v with speed
c > 0. If we substitute (1.4) into (1.1), we get a system of differential
equations with respect to the stretched variable £ = x + ct; qi and q2 being
replaced by q1 (x + ct) = ql (x, t) and q2 (x + ct) - q2 (x, t) respectively
(external sources moving with speed c). For constant diffusion coefficients,



let us write down, when a = b = 1, the derived equations, in which we have
dropped the hats while ’ refers to the derivative 2014

The restrictions a = b = 1 are only imposed for simplicity; the results
obtained in this paper are easily extended to the case a(s) = a > 0, b(s) =
b > 0. Mathematically, by traveling wave solutions to system (1.1), we
understand nontrivial solutions to system (1.5) lying in the positive cone

that is classical solutions biologically meaningful. Recall that BC~ = 
denotes, as usual, the space of all functions u(.) with derivatives u ~~ > ( . )
bounded and continuous on R for j = 0,1, ..., k.

In the sequel, we are interested in the question of existence of such
solutions even when one of the parameters ~, ~c or the functions q1, q2 is

identically zero. In each case, suitable boundary conditions will be associated
with system (1.5); in fact, they may often be derived from it.

The organization of the paper is as follows. In Section 2, we first make
some assumptions on the functions g and ql, q2; next, we classify four basic
types of systems related to system (1.5) and then infer the boundary con-
ditions to be associated with. Section 3 is concerned with the discussion of
those distinct types. Existence results as well as methods of solvability are
presented. Sections 4-6 are devoted to the proofs of the existence theorems.

The following preliminary lemma, the proof of which is rather classical,
will be useful in the sequel.

LEMMA 1.1. - (a) Let f: --~ Il~ be a uniformly continuous function
such that f(x) dx converges. Then lim f(x) = 0.

(b) Let f: : II~+ -~ R be a C2 class function such that f " E and
lim f(x) exists. Then lim f’ (x) = 0.

2. Assumptions and settings of the problems

Given c > 0, let us assume ~, ~c > 0; they may be viewed as eigenvalues
of system (1.5). The nonlinear term g: II~ --~ R as well as the functions
Q1, , q2 : I~ ~ are continuous and satisfy global Lipschitz condition. The



relevant assumptions read

Owing to (2.1) and Lemma 1.1, the functions qi (i = 1, 2) necessarily satisfy
qi E and lim = 0.

The notations used herein are mostly standard. The norm of the Lebesgue
space is defined in the usual way and is denoted by ~ . ~ p (1 ~ p  oo )
while the norm in is denoted . We will shorten these

spaces to LP and respectively.

In regard to system (1.5), we deal basically with four types of distinct
systems which we classify as follows:

When A or/and ~c equals to zero, corresponding sub-cases will be also taken
into consideration. Even if, in the biological context, A and  are known to be
positive, the cases A = 0 or  = 0 appear to be of substantial mathematical

interest. Furthermore, we will show that each type gives rise to some specific
difficulties. In order to set suitable boundary conditions, let us primarily
mention and prove the following

LEMMA 2.1.2014 Let (u, v) E C+ be a traveling wave solution to system
(1.1~. Then

Proof. - (a) Set y: == u+ v and q: - ql +q2; then, adding ( 1.5a) to ( 1.5b) ,
and integrating the resulting equation from 0 to x, we get:



where 8(x): _ (y’-cy)(x)-(y’-cy)(o). Since 0 E W1~°° and u, v are positive,
both integrals in the left-hand side of (2.3) are bounded. Moreover, they are
increasing for x > 0 (resp. decreasing for x  0), and hence convergent.
Then, Lemma 1.1, (a) completes the first claim of the lemma.

(b) Assume A = 0; Equation (1.5a) may be written 
== (vg(u) + > 0 over Integrating backwards from -f-oo and
noting that u’ E L°°, we get u’ > 0 over the case q2 - 0 is treated in a
similar manner.

(c) . First, assume A and  positive. As u", v" E L°°, part (a) both with
Lemma 1.1, (b) imply lim u’(x) = lim v’(x) = 0.

. When A = 0, u is bounded and monotone increasing by part (b); then
lim u(x) exist. Now, either  > 0 and so lim v(x) = lim v’(x) = 0

or ~c = 0 and then adding the two equations in (1.5) yields -y" + cy’ = q > 0.
Thanks to Maximum Principal, y is increasing, hence admits some limits
at infinity; thus, the existence of lim v(x) follows immediately and, in

turn, implies lim v’ (x) = 0.

. It remains to consider the case in which A > 0 and p = 0; here
lim u(x) = lim u’(x) = 0. Integrating between 0 and x the equation

- y" + cy’ + ~~c = q, we find that (-y’ + cy) converges, as x -~ +oo, and
so does ( -v’ -+- cv) Now multiply Equation ( 1.5b) by v and integrate again
from 0 to x > 0; we get the following identity:

Whence,

therefore the integral fo converges. Then, Lemma 1.1, part (a)
still applies and shows that lim ( v’ (x ) ~ 2 = 0; since ( -v’ + cv ) converges,
lim v(x) exist; the same holds at -oo.

At last, the vanishing values of the second derivatives follow from system
(1.5) itself. The proof of Lemma 2.1 is thereby completed.



Remark 2.2. As shown in Lemma 2.1, the behaviour of the solutions
at infinity is rather related to the positions of the parameters A and 
with respect to 0. Particularly, = 0 the following conservation
relation, in which q: = q1 -~- q2, holds true:

Now, u is monotone increasing, then = 0 follows as a consequence
of vg(u) (-~-oo) - 0 both with (2.2); in addition, if v{-oo) - v- for some
non-negative constant v_, then (2.4) yields = + v- 

In addition, when v- is positive (this holds in particular if q2 - 0), then
u(-oo) = 0 so that u(-~oo) = v- + 

However, in general, we will only set 0  v+ ==  v( -(0) = v-
whenever 92 = 0 and 0  u- = u(-oo)  = u+ in case A = 0.

3. Presentation of the results and description of the proofs

3.1. Type I Problems (q1 = q2 = 0)

The study of the autonomous system

is available in the literature. So, we briefly review the main known results.

3.1.1. Sub-case  > 0, 03BB  0

From Lemma 2.1, v(~oo) = 0 while v is decreasing which is absurd; this
case is thus of no use whatever.

3.1.2. Sub-case ~ _ ~c = 0

System (3.1) supplemented by the following boundary conditions

with some ~3 > 0, reduces to the well known Fisher problem. Concerning
this case, it holds

THEOREM 3.1. ( ~11~ , ~15~ ) . Assume (2.2) and g is increasing; then,
there exits co > 0 such that problem (3.1)-(3.~) has a solution (u, v) E C+



if and only if c > co. . Moreover. u (resp. v - ,~ - ~c~ is increasing (resp.
decreasing).

3.1.3. Sub-case ~ > 0, ,u = 0

In ~6~ , the author studied a similar system with a slightly different re-
action term having the form uvh(v) instead of vg(u). Using a topological
method, an existence result has been proved assuming lim sh(s) - 0, the
function s ~ sh(s) is non decreasing and that it holds:

Here, the reaction term vg(u) is linear in terms of v; the first two hypotheses
are then obvious; however, following [6], we may require, instead of the third
assumption, the following one

Then, we can prove again the following existence result

THEOREM 3.2. For any ,Q > 0. there exists 0  c  c such that, for
any c E~c, c~, system (3.1~ has a solution (u, v, ~) E satisfying

= 0 and 0  v(+oo)  v(-oo)  ,C~.

We omit here the details of the proof. Note that in the model case
g(s) - s, equality holds in (3.3) with ko - 6 ~ For this particular case,
Hosono &#x26; Ilyas proved, by a shooting type argument, the following

THEOREM 3.3. ([8]). Fo_r any ,~ > 0, there exists ~ - > 0 and
a E [0, ~3~ such that b’~ a~; ~ c = > 0 such that system (3.1)
has a solution (u, v) E ~C1 (II~)~2 satisfying - 0, v(-oo) - ,~ and
v(+oo) = a for any c > c.

3.2. Type II Problems (ql, q2 ~ 0)

We will prove

THEOREM 3.4. Assume (~.1 )- (,~. ~) hold true. Then, for any c > 0 and
~, ~c > 0, system (1.5) admits at least one solution (u, v) E C+ subject to
one of the following boundary conditions:



It is to point out that Type II problems are easier to solve than Type III
or IV ones; the reason is that trivial solutions are ruled out by the presence
of q1 and q2. Here is a sketch of the proof. Considering the problem in a
bounded domain of the real line, the problem is then reduced to a fixed

point formulation. The use of classical properties of Leray-Schauder degree
[10] leads to an existence result. Subsequently, a priori estimates allow us
to pass to the limit on the size of the domain and get a solution defined on

the whole real line; to this end, we only need to invoke the compactness of
the embedding .

3.3. Type III and IV Problems

The method described above to prove Theorem 3.4 will be used here

again. However, when ?i = 0 (resp. q2 - 0), the function 16 = 0 (resp.
v - 0) is a trivial solution. So, one may expect this trivial situation to arise
when passing to the limit from a bounded domain to the full real line; to
avoid such a situation, we may resort to an additional prescribed condition,
say u(0) - ~y or v(0) == rJ with some > 0, at the cost of introducing
some additional fictitious unknown, say v or of considering another unknown

among the parameters c, A or ~c. Thus, the latter may be regarded as an

eigenvalue of the problem and therefore must be estimated; such estimates
are not always easy to be performed; in the simple case qi = q2 = a = ~c = 0,
estimates of c has been undertaken successfully in [3], [11]. As for the case
p = qi = q2 = 0, estimating the eigenvalue A > 0 is not much more difficult

[6]. Anyway, we will, even so, prove the following results, under the sole
assumptions (2.1)-(2.2):

THEOREM 3.5. - (q2 = 0; q1 ~ 0, a > 0, p = 0). For any c > 0, there
exists a solution (u, v) E C+ to system (1.5) satisfying one of the boundary
conditions:



THEOREM 3.6. (ql _ 0; q2 fl 0, a > 0, ~c > 0). For any c > 0; there
exists a solution (u, v) E C+ to system (1.5) satisfying one of the boundary
conditions:

Remark 3.7. (a) The techniques used to prove Theorems 3.5 and 3.6
are slightly different.

(b) As indicated in Section 3.1.1, the conditions 92 = 0 and  > 0 are
incompatible.

(c) Contrary to Theorems 3.1-3.3, we can observe that the existence
of traveling waves is obtained with no condition prescribed upon the wave
speed; this is due to the presence of external sources in system 1.1.

4. Proof of theorem 3.4 (ql q2  0, ~, ~c > 0)

4.1. The general framework

Given some positive real parameter a > 0, we first intend to solve system
(1.5) in the open interval Ia: =] - a, +a[. The setting is as used in ~3J , , [6]
and [11]. Let be the space of functions whose derivatives are
continuous on [-a, +a] and consider the Banach space X = ~C1 (I a )~ 2, both
endowed with the supremum norm. Let be non-negative constants. For
any t E [0,1], define the mapping which sends each element

(u, v)EX onto the element (U, V) where (U, V) is the unique solution to the
following linear boundary value problem

Here 0  r2 (resp. 0  s2 ) are the roots of the characteristic
equation (resp. ~2014c~2014~=0). Searching (u, v) E X solution



to system (1.5) is then equivalent to finding a fixed point to the mapping
K1. For this purpose, we begin by defining a Leray-Schauder topological
degree with respect to an open set H, viz. deg(I - Kt , H, 0); when the latter
is nonzero for some t, it will be so, by Invariance Property by Homotopy of
the degree, for any t E [0,1]; this is what we intend to do when t = 0. On
behalf of Non-vanishing Property of the latter [10], we infer the existence
of a sought solution.

Remark 4.1. The boundary conditions {4.2) are purely technical. When
A = 0, one may expect an increasing solution u on the whole real line; so,
the homogeneous Dirichlet condition u(a) = 0 seems to be unrealistic; in
fact this condition helps to estimate the sought solutions without altering
the sign of u’ on R for the convergence, -i-oo, is only of local type.
Likewise, mixed conditions at -a are not related to those expected to be
obtained at -oo.

4.2. Definition of a topological degree

First, let us start with

LEMMA 4.2. - Let (u, v) E X be a fixed point of the mapping Kt and
set q: = q1 + q2, ~: == + Then, for any x E , the following
pointwise estimates hold true:

Proof. - (a) The positiveness of v is an easy consequence of Strong
Maximum Principle for

Once v is positive, so is u for the same reason. One can note the introduction
of the absolute value which will disappear as a result of the positiveness of
u both with assumption (2.2).



(b) Starting from the inequality

we make an integration from -a to x after observing that (-v’ ~-cv)(-a) _
(c - s2)v(-a)  0; we get

hence v’ (x) > - ~ q2 ~ 1. On the other hand, v’ (a)  0 since

v (a) = 0 and v > 0 on fa. Then, integrating (4.3) from x to a yields the
following estimate

Now, (4.4) may be written as

which we integrate again from x to a to get

Inserting this in (4.5) proves part (b) of the lemma.

(c) Set ~p(s): = q( s) ~ (~ - ~c)v(s); then the function y: = u -~- v satisfiesthe equation = + cy + (A - then is explicitly solvable: the equation -~ + c~/ + A~/ = (~ which is explicitly solvable:

with

Assume A > 0; using (4.6), (4.7), it is easy to check that, for any x E Ia,
0  Y(x)  + We infer



Turning back to (4.8) and noting that 0  ~~p~ ds  
we deduce 

"

Estimating u’ then follows from part (b); the case A = 0 is treated as in (b)
since -y" + cy’  q. The proof of the lemma is now complete.

COROLLARY 4.3. - Let I be the identity operator on X . Then, there
exists an open set H c X such that; for any t E [0, 1], , the Leray-Schauder
topological degree deg(I - Kt, Q, 0) is well defined.

Proof. - From Lemma 4.2, we have got some positive constant M not
depending on t and a such that M whenever (u, v) E X
is a fixed point of the mapping Kt. . Then, take H the open ball of radius
R = M + 1 in X. It is not difficult to show that Kt is uniformly continuous
with respect to t; in addition, it is compact by the compactness of the
embedding ~--~ therefore, our claim follows.

4.3. Computation of the degree

We have

PROPOSITION 4.4. - Vt E [0,1], deg(I - Kt, SZ, 0) _ +1.

Proof. As mentioned in Sub-section 4.1, it is enough to prove the
formula for t = 0. In this case, an explicit computation yields

The claim of the proposition is then a consequence of Multiplicative Prop-
erty of the degree since deg(I, S2, 0) = +1.

4.4. Passage to the limit a = -t-oo

Thanks to Proposition 4.4, Kl admits at least one fixed point (ua, va ) EX, ,
which we extend to the whole real line by setting ica (x) = ua (-a), va (x) _
va (-a), Vr x -a and = Va (X) = 0, a. System (4.1) both with
Corollary 4.3 show that va are bounded independently of a in 



the latter is compactly embedded in As a consequence, there is a

sequence (an) such that, as n - +00, converges, in the

topology of to (u, v) solution to system (3.1), ending the proof
of Theorem 3.4.

5. Proof of theorem 3.5 (72 = 0; 0, ~ > 0, ~c = 0)

5.1. Preliminaries

The proof runs parallel to the one of Theorem 3.4; nevertheless, we will
introduce a new unknown and get the degree computed differently. The
function qi as well as the parameters ~ > 0 and c > 0 being given, consider
two real constants 0  /3 and define the function f 1 : : R by

On a bounded open interval Ia =] - a, -~-a~ (a > 0), we define, as usual,
a family of linear mappings Kt, (t E [0,1]), on the Banach space X: : _

x II~ such that Kt(u, v, v) _ (U, V, v(o) + v - q - fl(v)) and (U, V)
is the solution to the system

where xi E is a positive, Lipschitz continuous auxiliary function to
be chosen later on. With (5.2), appropriate boundary conditions are

Our purpose is to find a fixed point (u, v, v) for the mapping K1. As un-
dertaken in Section 4, we define and compute a topological degree of Leray
and Schauder type. Since, as in Corollary 4.3, Kt is compact and uniformly
continuous with respect to the parameter t, it remains to find an open set

containing all desirable solutions and such that exactly one solution exists
fort=0.

Remark 5.1. The parameterization used in (5.2)-(5.3) is not standard;
that used in Section 4 will be ineffective in the sequel. Here, one can note
the introduction of the fictitious unknown v which need to be bounded. The
definition (5.1) will play a key role in its estimate. Moreover, its presence
justifies the condition v(0) = r~ + f 1 (v) for any fixed point which allows us
to avoid the trivial solution v - 0 when passing to the limit as a - +00.



5.2. A priori bounds

First, begin with

LEMMA 5.2. Let (u, v, v) E X (v > 0) be a fixed point of the mapping
Kt . Then. for any x E Ia, it holds

Proof. It mimics that of Lemma 4.2. Assuming v > 0, we can easily
check that v > 0; hence, from Maximum Principle both with left boundary
condition in (5.3), we infer v > 0; then we just observe that v(a) = 0
and v > 0 on Ia imply v’ (a)  0 so that an integration over (x, a) of the
inequality (v’ (x)e-~x )’ > 0 yields v’ (x)  0, V x E Ia; in particular v’ (-a) 
0. Then ?;(0)  v(-a)  v follows, that is fl(v)  v - r~. Definition (5.1)
yields  v  /3 (Fig. 1) so that 0  v(x)  v ( -a)  /3 for any x E 7~. In

addition, the function v’ - cv is increasing; then v’(x) - cv(x) > -cv > -c/3
so that v’ (x) > -c/3 and v(x)  v  {3; whence part (c). Let y: = u + v;
an upper bound for u’ is achieved by noticing that -y" + cy’(x)  
then, using e-~~ as an integrand factor and integrating from x to a yields
~’ (x)  Vr E Ia; the same inequality integrated over -a to x implies
- y’ + cy  |q1|1 + c/3, and so y’ (x) c/3, for any x E Ia ; on the
other hand, multiplying bye-eX and integrating again from x to a yields part
(e) of the lemma; note that all bounds are independent of the parameters
t E [0,1] and a > 0.

In an analogous manner to the one used to prove Corollary 4.3, we
deduce some positive constants , k2 which enable us to define an open
subset of X, say

such that deg(I - Kt, SZ, 0) is well defined for any t E [0,1]; now, we have to
compute it in the case t = 0.



Figure 1. - Graph of the function f 1

5.3. Computation of the degree

Let us set

For a > 0, we will use the notations

and assume that

Remark 5.3. - As an example, hypotheses (5.6), (5.7) are fulfilled by
means of the function

for some 0  bl  ~  ~2 with



since lim ~(~) = +00, 0  Ji  62 hold true for sufficiently small 7~. In

fact, (5.6) - ~-~ > ~ for a large enough, while (5.7) - ~~  /?. At

present, we are ready to prove

PROPOSITION 5.4. - There exists a > 0 such that for e [0,1], , and
deg(7 - Kt, H, 0) 7~ O.

Proof. - By virtue of Invariance Property by Homotopy of the degree
together with the classical properties of Schauder Index, it is enough to

prove that the mapping Ao has exactly one fixed point (uo, vo) in 03A9 [10]!
however, let us notice that such a fixed point is obtained equivalently as the
unique positive solution to the linear boundary value problem

ri, r2 being as defined in Section 4.1, a straightforward computation yields

In addition, let us remark that

while the condition (5.10) reads

So, it remains to prove that there exists uniquely one solution v ,~3 ~
which fulfills both (5.11) and (5.12). Adding (5.6) and (5.7) and noting that
0  Jl,ao  we infer J2  ~~ and so



Now, consider the line (A) the equation of which in terms of v reads
y = by virtue of (5.13), it intersects the v-axis through
the point i ±e 2~~ E~r~, [ with a slope less than unity. By definition (5.1),
(A) must also intersect the graph of the function f 1 in two points q 
vi,a  ~~  v2,a  {3 (Fig. 2) solutions of the algebraic equation (5.12);
more explicitly,

Figure 2. - Position of f 1 with respect to (A)

Moreover, if ~3: = 2014~ In (l 2014 ~-~) , thenC B 

Finally, assume a > a: = max(ao, al, a2, a3); we conclude that only v2,a
satisfies (5.11) ensuring positiveness of v; it then corresponds to a unique
solution (ua, va, va) lying in the open set Q, ending the proof of the proposi-
tion. As in Sub-section 4.4, we pass to the limit, when a --~ +00, and achieve
the proof of Theorem 3.5. Note that the restriction v (o) > r~ does not allow
the trivial solution v - 0 to arise.



6. Proof of theorem 3.6 (ql = 0; 0, ~ > 0, ~C > 0)

We aim to show again existence of solution (u, v) for any wave speed
c > 0; to this end, we introduce, as in Section 5, a new unknown v > 0
while A and  are considered fixed. Then, we look for fixed points (u, v, v)
for the mapping Kt defined by Kt (u, v, v) _ ( U, V, u(o) + v - ~y - f 2 (v) where

where x2 is a smooth positive function to be selected conveniently.

Are given two constants q and ,~ required to satisfy some conditions
which we present at the end of the proof; in particular, we assume

As for the real function f 2, it is defined by

with slope m: = 1 ~~3 - ~y + ~g~ ~ (note that, with (6.3), s2 > c ~ m >
0) .

6.1. A priori bounds

As in Lemma 5.2, we can show the following estimates the proofs of
which are omitted.

LEMMA 6.1. Let (u, v, v) E X (v > 0) be a fi.xed point of the mapping
I~t . Then, for any x E Ia, it holds



6.2. Computation of the degree

Our purpose is to prove

PROPOSITION 6.2. - There exists positive constants 0  ~y  ,C3 and a
positive function x2 such that the system

subject to (6.2), admits exactly one solution (u, v, v) satisfying u(o) _ -y +
f2(v) as well as the statements of Lemma 6.1, provided a is large enough.

Proof. Setting h: = q2 - x2 and solving (6.2), (6.5), we get

Moreover v > 0 ~ v’(a)  0 ~ s203BDes1a + > 0; this
holds particularly true if the unknown v is positive and

However, the condition _ ~y + f2 (v) reads

Owing to the definition (6.4), this equation admits uniquely one solution
v ,~3~ if and only if (Fig. 3)

Now, (6.3), (6.6) and (6.7) are simultaneously fulfilled whenever the
following sufficient conditions hold true (note that s2 > c)



Figure 3. - Graph of the function of f 2

and the parameter a is large enough. Furthermore, sufficient conditions for
(6.10) read

But (6.8) and (6.11) lead to the following necessary condition

In order to show how the conditions (6.8), (6.9) and (6.11), (6.12) may be
accomplished, let us suppose, for instance, the continuous function h to be
defined in the following way:

in which - (k - 1 - + ks + 1 with k E R and 03B4 > 0 to be



selected suitably further on. Inequality (6.12) is then equivalent to

Thanks to (6.13), the integral in the right-hand side of (6.14) equals C +
k (t2 + where C is some constant not depending on I~, ~; now,
since (t2 +  0, (6.14) is satisfied for k large enough.

At last, let us split up the integral in (6.9)

In order to check (6.9), let us distinguish between two cases:

> 0: From definition (6.13), the first integral in (6.15) is bounded
while the second one diverges to +00 whenever 0  6  -si  0; (6.9) then
follows.

= 0: Here sl - 0 and h(t)dt = ~ - 6 _ 4e 3 -2 > 0 if and
only if

k being taken so large that (6.14) is satisfied, we may choose b > 0 small
enough to guarantee (6.16).

Therefore, in both cases, (6.9) and (6.12) are fulfilled by selecting k large
and afterwards 6 > 0 small enough; a function x2 = q2 - h is thus chosen.
At last, we pick out two positive constants ~y, ~3 satisfying

to obtain (6.8), (6.11) and then the desirable conditions for sufficiently large
a > 0, ending the proof of Lemma 6.2.

As previously undertaken in Sections 4-5, we then easily conclude, from
Lemma 6.1 and Proposition 6.2, the proof of Theorem 3.6.
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