@article{AFST_2002_6_11_1_57_0, author = {Haslinger, Friedrich}, title = {The canonical solution operator to $\bar{\partial }$ restricted to spaces of entire functions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {57--70}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 11}, number = {1}, year = {2002}, mrnumber = {982059}, zbl = {01982059}, language = {en}, url = {http://archive.numdam.org/item/AFST_2002_6_11_1_57_0/} }
TY - JOUR AU - Haslinger, Friedrich TI - The canonical solution operator to $\bar{\partial }$ restricted to spaces of entire functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2002 SP - 57 EP - 70 VL - 11 IS - 1 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - http://archive.numdam.org/item/AFST_2002_6_11_1_57_0/ LA - en ID - AFST_2002_6_11_1_57_0 ER -
%0 Journal Article %A Haslinger, Friedrich %T The canonical solution operator to $\bar{\partial }$ restricted to spaces of entire functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2002 %P 57-70 %V 11 %N 1 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U http://archive.numdam.org/item/AFST_2002_6_11_1_57_0/ %G en %F AFST_2002_6_11_1_57_0
Haslinger, Friedrich. The canonical solution operator to $\bar{\partial }$ restricted to spaces of entire functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 11 (2002) no. 1, pp. 57-70. http://archive.numdam.org/item/AFST_2002_6_11_1_57_0/
[1] The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. | MR | Zbl
). -[2] Hankel operators on weighted Bergman spaces, Amer. J. of Math. 110 (1988), 989-1054. | MR | Zbl
), ) and ). -[3] Maß - und Integrationstheorie, Springer Verlag, Berlin 1996. | Zbl
). -[4] Compactness of the ∂-Neumann problem on convex domains, J. of Functional Analysis 159 (1998), 629-641. | MR | Zbl
) and ). -[5] Compactness in the ∂-Neumann problem, Complex Analysis and Geometry (J.McNeal, ed.), Ohio State Math. Res. Inst. Publ. 9 (2001), 141-160. | MR | Zbl
) and ). -[6] Weighted spaces of entire functions, Indiana Univ. Math. J. 35 (1986), 193-208. | MR | Zbl
). -[7] The canonical solution operator to ∂ restricted to Bergman spaces, Proc. Amer.Math. Soc. 129 (2001), 3321-3329. | MR | Zbl
). -[8] An introduction to complex analysis in several variables, North-Holland Publishing Company, Amsterdam 1990 (3rd edition). | MR | Zbl
). -[9] Hankel operators between weighted Bergman spaces, Ark. Mat. 26 (1988), 205-219. | MR | Zbl
). -[10] Function theory of several complex variables, Wadsworth & Brooks/Cole, 1992 (2nd edition). | Zbl
). -[11] Compactness of the ∂-Neumann operator, Proc. Amer. Math. Soc. 103 (1988), 1136-1138. | MR | Zbl
). -[12] Einführung in die Funktionalanalysis, Vieweg Studium 62, Vieweg-Verlag 1992. | MR | Zbl
) und ). -[13] Toeplitz operators on pseudoconvex domains and foliation C* - algebras, Ann. of Math. 130 (1989), 531-565. | MR | Zbl
), ) and ). -[14] Hankel operators between weighted Bergman spaces in the ball, Ark. Mat. 28 (1990), 183-192. | MR | Zbl
). -[15] Lineare Operatoren in Hilberträumen, B.G. Teubner Stuttgart, Leipzig, Wiesbaden 2000. | MR | Zbl
). -[16] Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. 109 (1990), 721-730. | MR | Zbl
). -