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Biplots for matched two-way tables (*)
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RESUME. - Cet article a pour objet l’analyse exploratoire de tableaux
apparies a deux entrees et leur representation par des « biplots ». Ce

faisant, nous revoyons la decomposition en valeurs singulieres des matri-
ces reelles et complexes. 11 est montre comment des methodes classiques,
initialement introduites pour analyser des tableaux carres, s’etendent a ce
cadre plus general. L’interpretation en terme de modele de ces « biplots »
est aussi tiree au clair.

ABSTRACT. - This paper is an investigation into the exploratory analy-
ses of matched two-way tables and their biplot visualizations. In doing so,
we revisit the singular value decomposition of real and complex matrices.
It is shown how standard methods, initially derived for the analysis of
square tables, extend to this more general setting. The modeling inter-
pretation of these biplots is also elicited.
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1. Introduction

A central concept in the analysis of square tables is that of symmetry
and, consequently, that of departure from symmetry (Caussinus [2]). This is
illustrated in several analyses: some are model based (Caussinus [2] and van
der Heijden and Mooijaart [20]), some are matrix based (Constantine and
Gower [5], Escoufier and Grorud [8], and Greenacre [14]), some are mixed
(van der Heijden et al. [19]). In the exploratory approaches the square ta-
ble under consideration, possibly pre-processed, is split into two matrices, a
symmetric part and a skew-symmetric part. In the generalized linear mod-
eling approach, analogous decompositions are considered for the predictor
(see van der Heijden and Mooijaart [20]).

A similar decomposition can be elaborated for a set of two matched
two-way tables. The concept of symmetry translates into the concept of a
"common" part, while departure from symmetry into departure from the
common part, that is the "specific" part. Most statistical analyses addressed
to square tables can then be extended. As expected by the aficionados of
square tables, it turns out that descriptive and modeling points of view are
closely intertwined.

What follows is an investigation into the exploratory analysis of a set
of two matched two-way tables and their biplot visualizations. It is shown
how standard methods, initially derived for the analysis of square tables,
extend to this more general setting. This is illustrated on a data set that we
present in section 2. The concepts of extended symmetry (the "common"
part) and extended skew-symmetry (the "specific" part) are defined in sec-
tion 3. In section 4, we consider the singular value decomposition of real
and complex matrices for the analysis of extended symmetry and extended
skew-symmetry. The corresponding biplot visualizations and interpretations
are presented in section 5. As expected, these descriptive techniques develop
into intermediate models in a hierarchy of well-known linear models. The
last section is devoted to this development.

2. Data

We consider the results of the two referenda held in New Caledonia in
1988 and 1998 taken from an article of Jean-Louis Saux in "Le Monde"
dated Tuesday 10 November 1998 (see Table 1 ) . The size of this data set is
rather small but this is intended to balance the intricacy of the statistical
interpretation of the biplots that we present here.



2.1. Matched two-way tables

Table 1 exemplifies the situation where a set of two matched two-way
tables is of interest: the potential voters are cross-classified according to
their vote ( abstention, blanc, oui, non) and their province (iles, Nord, Sud)
on these two occasions. This will appear as a simple extension of the concept
of square tables, namely two-way tables which are cross-classified according
to two homologous factors (with levels in one-to-one relationship). However
in our case, nothing is square except for the unobserved geographical mo-
bility table and voting transition table which would be of great interest! A
similar but simpler situation is investigated in McCullagh and Nelder [17,
subsection 9.3.3] where the estimation of voter transition probabilities from
marginal frequencies is considered. Here, the analysis aims at detecting vote
(I) x province (J) interactions and, possibly, their evolutions over occasion
(T = 1, 2).

Table 1. - Referenda in New Caledonia in 1988 and 1998.

2.2. Pre-processing

Since we are dealing with count data, it is quite natural to keep in mind
a Poisson kernel. Approximate normality is then derived by using the square
root transformation. Such a pre-processing provides two matched matrices,
the entries of which are normally distributed with constant variance of ~.
Normality and matrix form are here of special interest since we want to use
least-square methods, namely the singular value decomposition of matrices.

Finally, each table is double-centred to filter (additive) main effects while
preserving higher order interactions. A model based interpretation of this
pre-processing will be given in section 6.

In passing we note that the square root transformation has been also
advocated on different grounds for the singular value decomposition of a
matrix of row profiles (Domenges and Volle [6]).



3. Extended symmetry and extended
skew-symmetry

Let A and B denote the resulting matched matrices. Let C = 2 A -I- 2 B
and D = 2 A - 2 B. Matrix C is interpreted as the "common" part of the
matched t ables A and B while D ( - D ) is the "specific" part of A over B
(B over A). .

It is easily seen that these extend both concepts of symmetry and skew-
symmetry for a square matrix. If A is a square matrix, possibly pre-processed,
let B = A’, the transpose of A. Then C and D reduce to the decomposi-
tion of a square matrix A into its symmetric and skew-symmetric parts:
C= 2A-~ 2A’ 2A’ with D = -D’.

Considering a square table A as a set of matched tables A and A’ is not
new: this "trick" is used in a modeling context for fitting quasi-symmetry
(see the "three dimensional representation of quasi-symmetry" in Bishop,
Fienberg and Holland [1]). It turns out that it can also be used to fit reduced
rank models (Falguerolles [9] and Falguerolles and van der Heijden [12]).

The "common" matrix C and the "specific" matrix D for the example
are given in Table 2.

Table 2. - Matrices C and D for the example.

4. Singular values decompositions

Biplot visualizations for a given data matrix AI are derived from reduced
rank approximations obtained by (generalized) singular value decomposi-
tion, where these approximations are least-squares optimal (Gabriel [13]).
We review some of the singular value decompositions which can be consid-
ered for the joint analysis of tables A and B (or of C and D). . We omit
all discussion pertaining to metric choice in the possible use of generalized
singular value decomposition although we recognize that these potentially
affect the visual aspects of associated biplots.



4.1. Concatenating A and B

One obvious strategy is to analyse the (pre-processed) block matrices:

In the example the first analysis may reveal the change of vote categories
for fixed provinces and the second the difference between provinces for fixed
vote categories. This approach is not pursued further, mainly for its lack of
symmetry with respect to the cross-classifying factors I and J.

4.2. Extended Constantine-Gower decomposition

This approach concentrates on separate analyses of C, the "common"
part, and D, the "specific" part. See Constantine and Gower [5] for the

analysis of a square table A where C = 2 A -I- 2 A’ and D = 2 A - 2 A’. .
Indeed, we have ~A~2+~B~2 = !!C1p + IIDI12 (for the Frobenius norm).

In the example, since C and D are double-centred (by heredity) and
since they each have smallest dimension equal to 3, C and D have maximal
order 2 which is here the case.

Applying the singular value decomposition to matrices C and D, it turns
out that C has general form:

while D has:

with standard notation. The ranks of C and D being 2, each singular value
decomposition gives rise to a two-dimensional biplot which fully visualizes
its corresponding matrix.

Table 3. - The squared singular values of C and D.



The squared singular values of C and D are reported in Table 3 as well
as their total. The modeling interpretation of the latter will be given in
section 6. The first singular value of D is quite large and even larger than
the second singular value of C. This indicates significant changes between
the two referenda. This was noted in "Le Monde" where Jean-Louis Saux
stated that "l’evolution est donc considerable" .

Note that the singular value decomposition of the block matrix:

collects the singular elements of both C and D, thus ordering the dimensions
attributable to each aspect (Greenacre [14, 15]). .

4.3. Extended complex decomposition

The idea is to analyse the complex matrix C + iD by complex singular
value decomposition (Steward [18]). We have +

and complex singular value decomposition provides complex left and
right singular vectors and real positive singular values. Note that each pair of
associated complex left and right singular vectors are given up to a product
by complex conjugate scalars with unit norm. This lack of identifiability is
overcome by introducing one constraint. Escoufier and Grorud [8] used this
approach for the analysis of a square table A where C = 2 A + 2 A’ and
D = 2 A - 2 A’. See also Chino, Grorud and Yoshino [4].

Again, considerations of dimensions and calculations show that C-E-iD is
of order 2. The squared real singular values obtained in the complex singular
decomposition of C + iD are given in Table 4 as well as their sum of squared
values.

Table 4. - The singular values of C + iD.

The order one complex approximation of C + iD is :



which can be rewritten as:

In (2), the real part approximates C, the "common" part, while the imag-
inary part approximates D, the "specific" part. Interestingly, it turns out
that the entries of the approximation of C can be read as an inner product
in a two-dimensional Euclidean space while the entries of the approximation
of D as signed areas in the same space. Remember that D is the "specific"
part of A over B and -D the "specific" part of B over A: this sign change
translates as an orientation change when interpreting corresponding areas
in the biplot (see Figure 3).

Thus the I levels and the J levels will be represented in the form of a
unique biplot with two readings: one for the "common" part C, and one for
the "specific" parts D (and -D) ..

Note that the singular elements of C + iD can be obtained by performing
the singular value decomposition of

(see Durand [7, page 33-34], Chakak et al. [3] and Grorud [16]). The singular
values occur in constant pairs and the order 2 approximation of AI has the
following structure:

The complex order 1 reconstruction of C + iD obtained in (1) can thus be
easily recovered. In other words, the order one complex approximation of
C + iD is nothing else but the order two real approximation of the block
matrix M.

Thus, in a single operation, either the complex singular value decom-
position of C + iD or the real singular value decomposition of M produces
reduced rank approximations for C and D. In these, a one-dimensional com-
plex singular element of C + iD provides bi-dimensional elements for the
approximation of C and D.

5. Biplot visualizations

We consider biplot visualizations for the example and discuss their prac-
tical use.



Figure 1. - Biplot of C: I, N, S are province categories (A)
and a, b, n, n vote categories (+).

Figure 2. - Biplot of D.



Figure 3. - Biplot of the approximations of C and D

given by the first order approximation
of C + iD: the first bi-dimension.

The rank 2 biplots for C and D are given in Figure 1 and Figure 2. The
rank 1 biplot for C + iD is given in Figure 3.

All visualizations, Figure 1 and Figure 2 on the one hand and Figure 3
on the other, tell basically the same story. And, given the small size of the
example, the story could have been read directly from Table 2: the overall
strong non attitude and lack of abstention and blanc in the Province du Sud,
with an increase in oui and a decrease of abstention from 1988 to 1998; the
overall strong abstention attitude and lack of non in the Province des Îles,
with an increase of abstention and decrease of oui from 1988 to 1998 ...

As an illustration of the reading of the complex biplot (see Figure 3),
we consider the vote oui in the Province du Nord. The corresponding values
in Table 2 are 11.06 for matrix C (a positive attitude in both referenda)
and -5.21 for matrix D (a declining attitude in 1998 compared to 1988).
An approximation of these two numbers can be recovered from the complex
biplot (Figure 3). The reading goes as follows. Let 0 be the origin. For
the "common" part, it is the inner product between ON and Oo which
approximates 11.06; the acute angle tells the positivity of the corresponding
value and it turns out that the approximation is equal to 1.85. For the

"specific" part it is twice the area of triangle ONO which approximates



- 5.21; The fact that we go clockwise from N to o tells the negativity of
the corresponding values and it turns out that the approximation is equal
to -3.99. These different readings on a common biplot are visualized on
Figure 3.

5.2. Two for one better than one for two?

Are two different readings on the same biplot better than the same
reading on two different biplots?

Firstly, we note that the comparison between biplots of Figure 1 and
Figure 2 on the one hand, and of Figure 3 on the other is biased: a fair
comparison would oppose two rank 1 biplots, one for C and one for D, to
the rank 1 biplot of C + iD which is represented in dimension 2!

Table 5. - Constantine-Gower approach: order 1 approximations
of matrices C and D for the example.

Table 6. - Escoufier-Grorud approach: order 1 approximations
of matrices C and D for the example.

Table 5 and 6 report the numerical values of the approximations given by
the first singular elements for both methods. An overall measure of residual
error for each approach is the total of two sums of squared differences: the
sum of squared differences between C and its order 1 approximation and



the sum of squared differences between D and its order 1 approximation.
The Constantine-Gower approach gives 342.51 while the Escoufier-Grorud
312.21. In this example, the complex biplot is winning by a hair’s breadth!

This is certainly factual. The natural bi-dimensionality of biplots con-
structed under the complex approach is more important in this comparison:
biplots are best displayed in two-dimensions. But the price to pay is the

provocative constraint to look at one picture with two different pairs of

glasses.

6. The modeling connection

In this section, a modeling point of view is taken up for comparing the
two approaches.

As already mentioned in subsection 2.2, under a Poisson kernel for the
initial data, the square root transformation gives data which are approx-
imately Gaussian with constant variance ~. The design is complete and
balanced: there is one observation for each cell of the I x J x T classification

where I denotes the vote categories, J the Province categories and T the
two occasions.

In this Gaussian context with complete and balanced design:

1. the double centring of each table is nothing else but considering the
residuals of an I * T + J * T model fitted under the identity link,

2. the "common" part C contains the I x J interaction.

3. the "specific" parts D and -D contain residuals from the model

two-way interactions.

The biplot analyses of C and D are interleaved in the above-mentioned
linear models and correspond to bilinear models (see Falguerolles and Fran-
cis [11] and Falguerolles [10]). In particular, twice the sum of squared sin-
gular values of C (and D) is equal to the difference of sum of squared
residuals between models I * T + J * T + I * J and I * T + J * T (I * J * T
and 7~T+J~r+7~J). This factor of 2 occurs since the size of the data
set (A and B) is twice the number of entries in either C, D or C + iD.

The biplot analysis of C + iD is also interleaved in the linear models
I * T + J * T and I * J * T. But now, the complex singular value decompo-
sition of C + iD gives rise to two bi-dimensions, each bi-dimension defining
an approximation of C and D. Due to the identifiability constraints, the in-
troduction of the kth order complex singular elements to previous elements



results in the specification of 2 * (1 + J - dk) new independant parameters
where dk = + 2 if k > 1 and d1 = 3.

The usual goodness-of-fit measures are summarized in Table 7 which
presents in a modeling context the results already obtained in the biplot
exploration of the data (compare Table 3 and Table 4).

Although sandwiched between the linear models and 7~J~T, ,
the model obtained by adding the predictors derived from the first order
approximation of C and D to the baseline linear model 
not included in Table 7. Its sum of squared residuals is equal to 685.02
(663.78 + 21.24) with 4 degrees of freedom. But it turns out that a slightly
better fit is obtained with the model where the predictors derived from the
first order approximation of C + iD are added to to the baseline linear model
7~+J~r: as seen in Table 7, the sum of squared residuals is then equal to
624.43 with 4 degrees of freedom. Twlice the hair’s breadth of subsection 5.2!

In passing we note that the modeling approach is best suited when there
are missing or structural values in the data. In this case, real or complex sin-
gular value decompositions cannot be directly applied and iterative methods
must be considered.

7. Concluding remarks

The central trick in this paper is the Gaussian assumption with iden-
tity link in a balanced design. Under these assumptions, a reduced rank
approximation for both the "common" part and the "specific" part can be
simultaneously attempted: the singular elements are embedded. It is well-
known that this property does not hold in other settings. In particular, for
square tables and under a Poisson assumption with log link, a more rigid
point of view is often recommended:

. If quasi-symmetry is rejected then only departure from quasi-symmetry
is to be modelled by a reduced rank model.

. If quasi-symmetry is accepted then only the symmetric part is to be
modelled by a reduced rank model.





See, for example, the discussions in van der Heijden and Mooijart [20],
Greenacre [14] and Falguerolles and van der Heijden [12] which can easily be
extended to matched tables. A more flexible approach is to keep the spirit
of complex conjoint approximation of C and D but this is another debate
which is similar to that of type I, II and III sum of squares in variance

analysis.

The two for one approach seems hard to generalize further than the
Gaussian case. In principle, Escoufier-Grorud decomposition (see subsec-
tion 4.2) could be incorporated in the predictor on top of the baseline linear
model I * T + J * T. . But estimation procedures are not available at the
moment.
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