@article{AFST_2004_6_13_1_3_0, author = {Bethuel, Fabrice and Orlandi, Giandomenico and Smets, Didier}, title = {Motion of concentration sets in {Ginzburg-Landau} equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {3--43}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 13}, number = {1}, year = {2004}, mrnumber = {2060028}, zbl = {1063.35075}, language = {en}, url = {http://archive.numdam.org/item/AFST_2004_6_13_1_3_0/} }
TY - JOUR AU - Bethuel, Fabrice AU - Orlandi, Giandomenico AU - Smets, Didier TI - Motion of concentration sets in Ginzburg-Landau equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2004 SP - 3 EP - 43 VL - 13 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://archive.numdam.org/item/AFST_2004_6_13_1_3_0/ LA - en ID - AFST_2004_6_13_1_3_0 ER -
%0 Journal Article %A Bethuel, Fabrice %A Orlandi, Giandomenico %A Smets, Didier %T Motion of concentration sets in Ginzburg-Landau equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2004 %P 3-43 %V 13 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://archive.numdam.org/item/AFST_2004_6_13_1_3_0/ %G en %F AFST_2004_6_13_1_3_0
Bethuel, Fabrice; Orlandi, Giandomenico; Smets, Didier. Motion of concentration sets in Ginzburg-Landau equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 13 (2004) no. 1, pp. 3-43. http://archive.numdam.org/item/AFST_2004_6_13_1_3_0/
[1] Variational convergence for functionals of Ginzburg-Landau type, preprint 2002.
, and ,[2] Topological methods for the Ginzburg-Landau equation, J. Math Pures Appl. 11, p. 1-49 (1998). | MR | Zbl
and ,[3] A measure theoretic approach to higher codimension mean curvature flow, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 25, p. 27-49 (1997). | Numdam | MR | Zbl
and ,[4] W1,p estimates for solutions to the Ginzburg-Landau functional with boundary data in H1/2 , C. R. Acad. Sci. Paris (1) 333, p. 1-8 (2001). | MR | Zbl
, , and ,[5] Ginzburg-Landau vortices, Birkhäuser, Boston, 1994. | MR | Zbl
, and ,[6] Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal. 186 (2001), p. 432-520. | MR | Zbl
, and ,Erratum 188, p. 548-549 (2002). | MR
[7] Uniform estimates for the parabolic Ginzburg-Landau equation, ESAIM, C.O.C.V 8, p. 219-238 (2002). | MR | Zbl
and ,[8] Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., to appear. | Zbl
, and ,[9] Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, C. R. Acad. Sci. Paris (I) 336, (2003) and preprint Lab. J.L. Lions (2003). | MR | Zbl
, and ,[10] A minimization problem related to superconductivity, Annales IHP, Analyse Non Linéaire 12, p. 243-303 (1995). | Numdam
and ,[11] Travelling waves for the Gross-Pitaevskii equation, Annales IHP, Phys. Théor. 70, (1999). | Numdam | MR | Zbl
and ,[12] On the structure of the Sobolev space H1/2 with values into the circle, C.R. Acad. Sci. Paris (I) 331, p. 119-124, (2000) and detailed paper in preparation. | MR | Zbl
, and ,[13] The motion of a surface by its mean curvature, Princeton University Press (1978). | MR | Zbl
,[14] Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau, C. R. Acad. Sci. Paris Sér. I Math. 319, p. 167-170 (1994). | MR | Zbl
and ,[15] Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,. J. Differential Equations 90, p. 211-237 (1991). | MR | Zbl
and ,[16] Metastable patterns in solutions of u t = ε2uxx - f(u, Comm. Pure Appl. Math. 42, p. 523-576 (1989). | MR | Zbl
, ,[17] Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations 96, p. 116-141 (1992). | MR | Zbl
,[18] Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201, p. 83-103 (1989). | MR | Zbl
and ,[19] Some conjectures on flow by mean curvature , Proc. of the Capri Workshop ( 1990), Benevento-Bruno-Sbordone (eds.) (1990).
,[20] Development of interfaces in RN, Proc. Roy. Soc. Edinburgh Sect. A 116, p. 207-220 (1990). | MR | Zbl
and ,[21] Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45, p. 1097-1123 (1992 ). | MR | Zbl
, and ,[22] Geometric Measure Theory, Springer , Berlin, (1969). | MR | Zbl
,[23] Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38, p. 297-319 (1985). | MR | Zbl
and ,[24] On a theory of phase transitions with interfacial energy, Arch. Rat. Mech. Anal. 87, p. 187-212 (1985). | MR
,[25] Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom. 31, p. 285-299 (1990). | MR | Zbl
,[26] Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Diff. Geom. 38, p. 417-461 (1993). | MR | Zbl
,[27] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108, no. 520 (1994). | MR | Zbl
,[28] Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142, p. 99-125 (1998). | MR | Zbl
and ,[29] Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16, p. 423-466 (1999). | Numdam | MR | Zbl
and ,[30] The Jacobian and the Ginzburg-Landau energy, Calc. Var. PDE 14, p. 151-191 (2002). | MR | Zbl
and ,[31] Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49, p. 323-359 (1996). | MR | Zbl
,[32] Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds, Comm. Pure Appl. Math. 51, p. 385-441 (1998). | MR | Zbl
,[33] Complex Ginzburg-Landau equation in high dimension and codimension 2 area minimizing currents, J. Eur. Math. Soc. 1, p. 237-311 (1999). | MR | Zbl
and ,Erratum, Ibid.
[34] A quantization property for static Ginzburg-Landau vortices, Comm. Pure Appl. Math. 54, p. 206-228 (2001). | MR | Zbl
and ,[35] A quantization property for moving line vortices, Comm. Pure Appl. Math. 54, p. 826-850 (2001). | MR | Zbl
and ,[36] The topological theory of defects in ordered media, Rev. Modern Phys. 51, p. 591-648 (1979). | MR
,[37] Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale, C.R. Acad. Sci. Paris (I) 323, p. 593-598 (1996). | MR | Zbl
,[38] The gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal. 98, p. 123-142 (1987). | MR | Zbl
,[39] Un esempio di Γ-convergenza , Boll. Un. Mat. Ital. B 14, p. 285-299 (1977). | MR | Zbl
and ,[40] Linear and non linear aspects of vortices , Birkhäuser, (2001). | Zbl
and ,[41] Motion of vortex lines in the Ginzburg-Landau model, Phys. D 47, p. 353-360 (1991). | MR | Zbl
and ,[42] Geometry of measures in Rn: distribution, rectifiability, and densities, Ann. of Math. 125, p. 537-643 (1987). | MR | Zbl
,[43] Line vortices in the U(1) Higgs model, ESAIM, C.O.C.V. 1, p. 77-167 (1996). | Numdam | MR
,[44] Local minimizers for the Ginzburg-Landau energy near critical magnetic fields, I and II, Comm. Contemp. Math. 1, p. 213-254 and p. 295-333 (1999). | MR | Zbl
,[45] Lectures on Geometric Measure Theory, Proc. of the Centre for Math. Anal., Austr. Nat. Univ., 1983 . | MR | Zbl
,[46] Ginzburg-Landau equation and motion by mean curvature. I. Convergence, and II. Development of the initial interface, J. Geom. Anal. 7, no. 3, p. 437-475 and p. 477-491 (1997). | MR | Zbl
,[47] The effect of a singular perturbation on nonconvex variational problems, Arch. Rat. Mech. Anal. 101, p. 209-260 (1988). | MR | Zbl
,[48] On the evolution of harmonic maps in higher dimensions, J. Diff. Geom. 28, p. 485-502 (1988). | MR | Zbl
,[49] On the asymptotic behavior of the Ginzburg-Landau model in 2 dimensions, J. Diff. Equ. 7, p. 1613-1624 (1994), | MR | Zbl
,Erratum 8, p. 224 (1995).
[50] On moving Ginzburg-Landau filament vortices, Max-Planck-Institut Leipzig, preprint.
,[51] A remark on the multiplicity of solutions for the Ginzburg-Landau equation, Ann. IHP, Analyse Nonlinéaire 16, p. 255-267 (1999). | Numdam | MR | Zbl
and ,