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Removability of singularities of harmonic maps
into pseudo-Riemannian manifolds(*)

FRÉDÉRIC HÉLEIN (1)

Annales de la Faculté des Sciences de ToulousE Vol. XIII, n° 1, 2004

ABSTRACT. - We consider harmonic maps into pseudo-Riemannian
manifolds. We show the removability of isolated singularities for continu-
ous maps, i.e. that any continuous map from an open subset of R’ into
a pseudo-Riemannian manifold which is two times continuously differ-
entiable and harmonic everywhere outside an isolated point is actually
smooth harmonic everywhere.

RÉSUMÉ. - Nous considérons des applications harmoniques à valeurs
dans une variété pseudo-riemannienne. Nous démontrons l’absence de sin-
gularités isolées pour les applications harmoniques continues, à savoir plus
précisément que toute application harmonique entre un ouvert de R2 et
une variété pseudo-riemannienne continuement différentiable deux fois et
harmonique en dehors d’un point isolé est en fait régulière partout.

1. Introduction

Given n E N* and two nonnegative integers p and q such that p + q = n,
a pseudo-Riemannian manifold (N, h) of dimension n and of signature (p, q)
is a smooth n-dimensional manifold N equipped with a pseudo-Riemannian
metric h, i.e. a section of T*N 0 T*N (where 0 is the symmetrised tensor
product), such that V MEN, hM is a non degenerate bilinear form of signa-
ture (p, q). Any local chart ~ : N ~ U ~ V C Rn allôws us to use local co-
ordinates (y1, ..., yn) E V: we then denote by hij (y) = h~-(y) )~ ~yi, ~ ~yj).

(*) Reçu le 11 février 2003, accepté le 21 octobre 2003
(1) Institut de Mathématiques, 2 place Jussieu, 75005 Paris, France.

E-mail: helein@math.jussieu.fr
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We say that (N, h) is of class Ck if and only if hij is Ck. We define the
Christoffel symbol by

where, as a matrix, (hij) is the inverse of (hij). Then for any open subset
Ç2 of Rm and for any C2 map u from S2 to N, if we note

and if we set Au : := 03A3m03B1=1 ~2u (~x03B1)2 and 0393(u) (~u~~u) := 03A3m03B1=1 0393jk(u) ~uj ~x03B1 ~uk ~x03B1,
we say that u is harmonic into (N, h) if and only if

Equivalently we may say that u is a critical point of

among C2 maps from n to N. The purpose of this paper is to prove the
following result.

THEOREM 1.1. - Let (N, h) be a pseudo-Riemannian manifold of class
c2, f2 an open subset of Rm, where m  2, a E 03A9 and u a map from 03A9 to

N such that

2022 u is continuous

2022 u is C2 and harmonic on Ç2 B {03B1}

Then u is C2 and harmonic on S2.

Such a result would be a consequence of standard results if the map u had
a finite energy and if (N, h) was Riemannian: indeed one could prove then
that u is weakly harmonic (because the capacity of a point vanishes) and
obtain the same conclusion by using the continuity of u, thanks to results
in [8] and [7] (with present form due to S. Hildebrandt). In dimension 2
the same finite energy and Riemannian target hypotheses lead to the same
conclusion but without using the fact that u is continuous as proved in [9].
However the difficulty here comes from the fact that the target manifold is
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pseudo-Riemannian. In particular even if we would assume that the map u
had a finite energy, it would not help much.

This result answers a question posed by F. Pedit. It is related to the
construction of spectral curves associated to any torus in the sphere S4,
a work in progress by F. Burstall, D. Ferus, K. Leschke, F. Pedit and U.
Pinkall (see [2] for an exposition of these ideas). Using Theorem 1.1 these
authors are able to prove various results about Willmore surfaces (recall that
the right notion of Gauss maps for Willmore surfaces is the conformal Gauss
map which takes values into a pseudo-Riemannian homogeneous manifold,
see e.g. [1], [5] or [2]).

Note that in the hypotheses of the Theorem it is necessary to assume
that u is continuous. An instance is the map x ~ (cos log 1 x 1, sin log |x|, 0)
from the unit disk in R to the unit sphere S2 in R3: it is smooth harmonic
outside 0, but is discontinuous at the origin. Also an interesting question
would be to know whether it is possible to replace the singular point by a
codimension 2 submanifold: our proof does not generalize obviously to such
a case, since in our method we need to enclose the singular set by arbitrary
small hypersurfaces on which the map is smooth.

Comments on the proof. - Our proof is based on applications of the
maximum principle. The strategy consists roughly of the following: on the
one hand we construct a smooth harmonic map which agrees with the initial

one on the boundary of a small ball centered at the singularity, on the
other hand we prove a uniqueness theorem for harmonic maps which takes
values in a neighbourhood of a point. The uniqueness result follows from the
maximum principle Theorem 5.1 which is inspired by [6] (see also [4]). This
reduces the uniqueness problem to an estimate on solutions of elliptic linear
PDE’s on a punctured domain, given in Lemma 6.1, the result where we
exploit the fact that the capacity of a point vanishes. The existence result is
obtained through a fixed point argument in Hôlder spaces in Theorem 4.2.
However in this result we need a uniform estimate in the Hôlder topology of
the inital harmonic map. This is the subject of our key result, Theorem 3.1,
where the uniform Hôlder continuity is established by using the maximum
principle. In the course of this paper we give the proof of more or less
standard results for the convenience of the reader: Lemma 2.1 is classical
in Riemannian geometry, Lemmas 4.1 and 6.1 are certainly well-known to
specialists but 1 did not find proofs of them in the litterature.
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2. Preliminaries

2.1. An adaptated coordinate system

LEMMA 2.1. - Let (N, h) be a pseudo-Riemannian manifold of class C2.
Let M0 be a point in JV, U be an open subset of N which contains Mo and
0: U ~ W ~ Rn a local C2 chart. Then there exists an open neighbourhood
Uo C U of M0 with the following property (denoting by Wo := 03C8(U0)):
~M E Uo there exists a smooth diffeomorphism 03A6M : W0 ~ VM C Rn
such that in the local coordinates y ~ ~ : = 03A6M o 03C8 ~ VM,

and there exists constants Cw, Cr &#x3E; 0 independent of M E Uo such that

and

Proof 2013 We denote by z = (z1,..., zn) E W the coordinates in the
local chart 03C8 : U ~ W and by hij(z) : = h03C8-1(z) (~ ~zi, ~ ~zj) the expression
of the metric. We look at a neighbourhood Wo of 03C8(M0) such that for all
M E 03C8-1 (W0) there exists a map 03A6M : Wo ~ Rn such that, denoting by
zM : = 03C8(M),

for some invertible matrix A = (Aij) E GL (n, R) and real coefficients Bijk
satisfying Bijk = Bikj. This map is well-defined if we choose Wo to be a
sufficiently small neighbourhood of zM. Let us compute the expression hij (y)
of the metric in the coordinates yi ~ Ti, 0 1jJ in terms of hij (z) :

In order to achieve (2.2) it suffices to choose Ajj such that hij(zM)AikAjj =
~kl (requiring also that A is symmetric and positive definite ensures unique
ness). Next we compute that:
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And we deduce 0393ijk in function of 0393ijk

Since Ap and hpq(zM) are of rank m and thanks to the relation rfs = 0393psr
we deduce that there exist unique coefficients Bijk satisfying Bijk = Bikj such
that (2.3) holds. Since 03A6M depends analytically on hij(zM) and 0393ijk(zM),
Condition (2.4) is obtained by choosing Wo sufficiently small. Then (2.5) is
a consequence of (2.4). D

2.2. Notations

In the next two sections we will use spaces of Hôlder continuous functions
and of functions with higher derivatives which are Hôlder continuous. We
first recall some notations and results from [3]. For any point x E R2 or

n we note

For any a E (0,1) and for all open subset H c Rm, we define C0,03B1(03A9) to
be the set of functions f on Q which are 03B1-Hölder continuous on Q, i.e. such
that 

for all compact

We also will use the notation

For x, y E f2, we denote by dx := dist(x, an) and dx,y := min(dx, dy) and if
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We also define

For all a E Rm, r E (0, oo) we note:

We denote by 03C9m the measure of the unit ball Bm(0,1). We will use the
following, which is a consequence of Lemma 6.20, Lemma 6.21 and Theorem
6.22 in [3]:

LEMMA 2.2. - Let a, e ~ (0, 1) and 03A9 be a smooth C2 open domain of
RI. Then there exists a constant C &#x3E; 0 which depends only on n, 03A9 and a

such that for all f E C0,03B1(03A9) such that |f|(2-03B2)0,03B1;03A9  ~, there exists a unique
map u E C2,03B1(03A9) which is solution of 

Moreover ~03B4 &#x3E; 0 such that u satisfies the estimate

We also recall that the interpolation result Lemma 6.35 in [3] implie
the following: if j,k ~ N, 03B1, /3 E (0,1), 03B3 E M then

where C is a positive constant which depends only on a, 03B2,j,k, n.

3. Hôlder continuity of the map around a

In this section we prove that any map satisfying the hypotheses of
Theorem 1.1 is uniformly Hôlder continuous in a neighbourhood of a.

THEOREM 3.1. - Let (N, h) be a pseudo-Riemannian manifold of class
C2, 03A9 an open subset of Rm, a a point in 03A9 and u a continuous map from
Ç2 to JV which is C2 and harmonic on 03A9 B {03B1}. Then there exists a E (0, 1)
and an open ball Bm(a, Ri) C 03A9 such that u is in C0,03B1(Bm(a, R1)) and
|u|0,03B1;Bm(0, R1) is bounded.
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Proof. - We apply Lemma 2.1 with M0 = u(a). Let Uo be the open
neighbourhood of u(a) and 03C8 : Uo ~ Wo be the local chart as in Lemma
2.1. We can assume w.l.g. that 0 is the ball Bm(a, 2R), where, since u is con-
tinuous, R E (0) oo) can been chosen in such a way that u(Bm(a, 2R)) ~ Uo.

For any xo E Bm(a, 2R), let 03A6u(x0) o 03C8: Uo ~ Vu(x0) be the local chart
centered at u(xo) given by Lemma 2.1. It follows from (2.3) and (2.5) that
in the coordinate system given by 03A6u(x0) o 03C8,

where Cr is the same constant as in (2.5). We observe that, by replacing R
by a smaller number if necessary and because of the continuity of u and of
(2.4), we can suppose that

We now fix some xo e Bm(a, R) and set

We also let, for r e (0, R],

and

Note that, because of the inclusion B"2 (xo, R) C Bm(a, 2R) and of (3.2),

For any v E Sn-1 C Rn we consider the following functions on Vu(xo) C Rn
(which contains u(Bm(x0, R))):

Using (1.1) and (3.1) we find that on Bm(x0, R) B {03B1},
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Since IIuIIR,xo C 1 4 by (3.2) and because of (3.3) we have 03BB|u(x)|  1 4,

Similarly

Now fix r E (0, RJ such that r =1= 1 xo and define D03B5 as follows

&#x3E; r, we assume that s = 0 and set Dg = ilo := 0.

And we let u+ and u03B5_ be the maps from Bm(x0, r) B D03B5 to Vu(x0) which are
the solutions of respectively

Since

the maximum principle implies that

Now we fix an arbitrary compact K C Bm(x0, r) B {03B1}. Then for 03B5 sufficiently
small we have

We let 03B5 goes to 0: since {a] has a vanishing capacity, the restriction of u03B5
to K converges in L1(K) to u+ := u0+ (apply Lemma 6.1 to ~03B5 := u03B5+ - u+)
Hence 

Since u and u+ are continuous on Bm(x0, r) and since K is arbitrary we
deduce that
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Similarly we get

We deduce from (3.6) and (3.7) that for any v E Sm

and thus

Hence if we let v : Bm(x0, r) ~ Vu(x0) be the solution of

and Q : Bm(x0,r) ~ R be the solution of

Then, since actually u± = (v, u) ± AQ, (3.8) implies that

Hence since v is arbitrary and using the maximum principle for Q we obtain

This implies in particular that, since u(xo) = 0,

Moreover since v is harmonic, for all x E Bm (xo, §) we have (observing that

where v is the exterior normal vector to the boundary. Hence Vx E B"2 (xo, r 2),
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where we used the maximum principle for v. Hence we deduce that

And from (3.10) and (3.11) we get

Using this inequality together with (3.9) we obtain that

We now choose any p E (0, r 2] and take the supremum of the left hand side
of (3.13) over Bm(x0,03C1). It gives

For k ~ N let rk := R4-k and apply (3.14) for r = rk and p = rk+l:

This implies, denoting by

We observe that, because of its definition, ak is a positive decreasing se-
quence and, as a consequence of (3.2) and (3.3),

We now let f : R ~ R be the function defined by f(q) = q2 - q 2 and
consider the smooth function ~ : [0, oo) ~ R which is a solution of

LEMMA 3.2. 2013 Let (ak)k~N be a decreasing sequence in [0,1 4] which

satisfies (3.15) and ~ be defined as above. Then ~k ~ N,
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Proof of the Lemma. - We show (3.17) by induction. This inequality is
obviously true for k = 0. Let us assume that (3.17) is true for some value

kEN. We first observe that, since f (0) = 0 and f  0 on [0, 1 2], 0  a0  1 4
implies that 

Hence

e the fact that f  0 on (0, 1 4] implies that ~ is decreasing on [0, oo)
e the fact that f is decreasing on [0, 1 4] implies that f o ~ is increasing
on [0,~).

Thus

And hence

Thu

Now since (3.17) is true for k, i.e. ak  0(k), we deduce that

Back to the proof of Theorem 3.1. - An easy quadrature shows that
~(t) = a0 2a0+et/2(1-2a0). Hence Lemma 3.2 implies

and since 0  a0  1 4, we deduce th
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We now choose any r E (0, R]. Then 3!k E N such that R  r  R 4k. Then
on the one hand r 4v implies

by (3.18). On the other hand R rk+1  r ~ k &#x3E; log R r log 4 - 1 implies

Hence we deduce that

We conclude that, since A is independent of xo, u is uniformly Hôlder con-
tinuous on Bm(a, R). ~

4. Existence of a smooth solution around a

We start with the following (classical) preliminary.

LEMMA 4.1. - Let Ç2 be an open subset of Rm whose boundary is C2. Let
~ E C0,03B1(~03A9) and f be the solution of

The?

where C1 is a positive constant which depends only on Q.

Remark. - We do not have an estimate on |f|(-03B1)2,a;03A9. Indeed this quantity
is in general infinite because |f|(-03B1)0,0;03A9 = supx~03A9 d-03B1x|f(x)| cannot be finite
unless the trace of f on 9H vanishes. However the maximum principle and
(4.1) imply the following:
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Proof. - First step : n is a half space - We assume that S2 = Rm+ :=
{x = (x, t)/x E IEg’n-1, t E (0,~)}. We use Proposition 7 and Lemma 4 in
Chapter V of [10]: there exists a constant Co &#x3E; 0 such that

Moreover using the fact that D f is harmonic, Vx E Rm+ we have if p := t/2,

which implies by (4.3)

Hence we obtain that there exists a constant C"0 such that

A similar reasonning starting from (4.4) leads to

for some constant C’’’0 &#x3E; 0.

Now using (4.3) and (4.4) we can estimate [f](-03B1)1,03B1;Rm as follows: if

x = (fi, t) and y = (y, s) are in ]R+ let d := inf (t, s). Then if |x-y|  2d we
have by (4.4)

On the other hand if lx - yl &#x3E; 2d we have by (4.3)
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Thus taking into account both cases we find that

An analogous work with (4.4) and (4.5) instead of (4.3) and (4.4) leads to

The estimate for [f](-03B1)0,03B1;Rm follows from a slightly different argument.

Again let x = (x, t) and y = (y, s) be in Rm+ and let d := inf(t, s). If

lx - y|  2d the same reasoning as above works using (4.3) and gives

However if |x-y| &#x3E; 2d,thenwewrite |f(x, t) - f(y, s)|  |f(x,t) -f(x,0)|+
|f(x, 0) - f(y, 0)|+|f(y, 0) - f(y, s) and estimate separately each term. Using
again (4.3) : 

Similarly one gets

Lastly using |f(x, 0) - f(y,0)|  |~|0,03B1;Rm-1|x - y|03B1, one concludes that

Assume for instance that s  t, so that d = s. Then by the Minkowski
inequality t03B1+s03B1 = d03B1+((t-s)+d)03B1  d03B1+(t-s)03B1+d03B1 = 2d03B1+(t-s)03B1.
Hence

And we thus get

So (4.6) and (4.7) implies the result on [f](-03B1)0,03B1;Rm.
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Step 2 - estimate on an arbitrary domain. - If 03A9 is a domain with a
smooth C2 boundary, then using local chart and a partition of unity one can
construct an extension g E C0,03B1(03A9) of ~ E C0,03B1(~03A9) which satisfies

Then the harmonic extension of ~ is f = g + h, where h is a function
which vanishes on ~03A9 and which satisfies -0394h = 0394g on Q. Because of the
previous estimate on g, [0394g](2-03B1)0,03B1;03A9  C’1|~|0,03B1;~03A9. Now Lemma 2.2 implies
that |h|(-03B1)2,03B1;03A9  03B4|0394g|(2-03B2)0,03B1;03A9. Hence the estimate on f follows by summing the
estimates on g and h. ~

LEMMA 4.2. - Let (Y, h) be a pseudo-Riemannian manifold of class
C2, Q an open subset of Rm, a E 03A9 and u a continuous map from 03A9 to

N which is C2 and harmonie on 03A9 B {a}. Then there exists ce E (0, 1) and
an open ball Bm(a, R2) such that Vr ~ (0, R2), there exists a map u E

C0,03B1(Bm(a,r),N) ~ C2,03B1(Bm(a, r), N) which is a solution of

I.e. u is a harmonie map with values in N which agrees with u on the bound-

ary of Bm(a, r).

Proof. - Again we start by applying Lemma 2.1 with Mo = u(a): it pro-
vides us with a local chart 03A6u(a) o03C8 on N around u(a). We dénote by yi, hij
and 0393ijk respectively the coordinates, the metric and the Christoffel symbols
in this chart. In the following we make the identification u ~ 03A6u(a) 0 03C8 o u,
so that we view u as a map from Bm(a, R) to Rn such that u(a) = 0 and
the majorations (2.3) and (2.5) hold.

For every r E (0, R] we let v : Bm(a, r) ~ Rn be the harmonic exten-
sion of u inside Bm(a, r), i.e.

We first apply Theorem 3.1 which ensures us that the C0,03B1 norm of u in
a neighbourhood of u is bounded: 3a e (0,1), 3Rl E (0, R] such that
|u|0,03B1;Bm(a,R1) is finite. This allows us to use Lemma 4.1 in order to estimate
v: we will use the notations
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and then (4.1) and (4.2) imply

where C2 = Ci + 1 + C1R03B1. We will denote by

Our purpose is to construct the extension satisfying (4.8). By writing

it clearly relies on finding a map w ~ C2,03B1(Bm(a,r), Rn) such that

Let us dénote by C(- 03B2k,03B1,r) := C(- 03B2k,03B1;Bm(a, r). We will construct w in C(-03B1)2,03B1,r by using
a fixed point argument. We first observe that Lemma 2.2 can be rephrased
(and specialized by choosing /3 = 03B1) by saying that there exists a continuous
operator, denoted in the following by (-0394)-1, from C(2-03B1)0,03B1,r to C(-03B1)2,03B1,r which
to each f E C(2-03B1)0,03B1,r associates the unique solution ~ E C(-03B1)2,03B1,r of

We will denote by J the norm of (-0394)-1. Hence w E C(-03B1)2,03B1,r is a solution of

(4.12) if and only if 

Note that v does not belong to C(-03B1)2,03B1,r (because in particular the trace of
on ~Bm(a,r) does not vanish). However estimates (4.10) holds. This lead
us to introduce the set

where the inclusion here is a continuous embedding. We then have:

LEMMA 4.3. - Let r E (0, R1] and w0,w1, W2 and w3 be in 03B503B1;r. The

0393(w0)(~w2 ~ ~w3) and 0393(w1)(~w2 ~ ~w3) E C(2-03B1)0,03B1;r and 
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where C3 is a positive constant.

Proof of Lemma 4.3. - It follows from the interpolation inequality (2.6)
that |Dwa|(1-03B1)0,03B1;r  |[w03B1]|03B1;r, Va = 0, 1, 2, 3. Moreover, for r E (0, Ri ] C

(0, R], estimate (2.5) implies that

Hence, using also the inequality |f|(03B2+03B3)0,03B1;03A9  |f|(03B2)0,03B1;03A9|g|(03B3)0,03B1;03A9, ~03B2, 03B3 E R such
that (3 + 03B3  0 (see 6.11 in [3]), we obtain that 

Thus (4.13) follows from the preceding inequality and from 

And (4.14) is a straightforward consequence of (4.13) and of (2.3). 0

Back to the proof of Theorem 4.2. - Lemma 4.3 allows us to define the
operator 

and (4.14) implies

In particular, letting B039B := {w E C(-03B1)2,03B1,r/|w|(-03B1)2,03B1;r  039B} (we recall that A
was defined in (4.11)), we observe that for all r E (0,R1] ~ (0,R’1] where
Ri = (803B4C3039B2)-1/03B1, i.e. such that in particular 03B4C3r03B1(2039B)3  A,

which means that T maps the closed ball BA into itself.
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Let us now prove that, for r small enough, the restriction of T on BA is
also contracting: writing that, ~w,  E SA,

and using (4.13) we obtain, assuming that r  RI,

Hence T is contracting if we further assume that r  R"1, where Rr :=
(1203B4C3039B2)-1/03B1, because it implies that 38C3rQ (2A) 2  1. In conclusion

(observing that actually Rr  R’1) if we let R2 := inf (Ri, Rr), then for all
r E (0, R2), T maps the closed ball BA into itself and is contracting. Hence
it admits a unique fixed point w E BA which is a solution of (4.12). CI

5. A maximum principle

THEOREM 5.1. - Let (N, h) be a pseudo-Riemannian manifold of class
C2. and Mo be a point in N. There exists an open neighbourhood UM0 of
M0, a local chart ~ : UMo ----+ Rn and constant 03B1 &#x3E; 0 such that for any
open subset 03A9 of Rm and for any pair of harmonic mappings u, v : 03A9 ~

(UM0, hij) (i. e. which satisfy (1.1)), then the function f : 03A9 ----+ R defined
(using u 0 0 u and 03BD ~ ~ 0 v) by

satisfies the inequality

where

Remark. - Note that here 1 - is an Euclidean norm on UM0 which has
nothing to do with the metric h on N. More precisely, assuming that
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Proof of Theorem 5.1. - Again we first apply Lemma 2.1 around Mo:
it provides us with a local chart 4J : U’M0 ~ Rn such that ~(M0) = 0
and estimates (2.3) and (2.5) on the Christoffel symbols 0393ijk hold. We fix
some a E (0, oo) which is temporarily arbitrary and whose value will be
chosen later. Then given a pair of harmonic maps u, v : Q ~ (U’M0, hij)
we compute div(03C1~f), where f is given by (5.1). We first find that

Hence (by using the notations (’, ’) for the scalar product in Rn and ’ for
the scalar product in R’)

where the "good" terms are

and the "bad" terms are

We now need to estimate the bad terms in terms of the good ones. We let
R E (0,~) such that ~(U’M0) ~ Bn (o, R) . We shall assume in the following
that
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where r has not yet been fixed. In the following we will first choose a as a
function of Cr and R, and second we will choose r as a function of a, Cr
and R. 

Estimation of BI

We have

And because of (2.3) and (2.5) which implies |0393(y)|  Cr 1 y | and

Ir (y) - 0393(y’)|  Cr 1 y - yl on U’M0, we deduce that

Using (5.3) and a symmetrization "in u and v one is led to

Hence we deduce using Young’s inequality that

We choose a E (0, oo) sufficiently small so that 1 203B12  4 (2CfR2 + 2 ) and
we impose also that r  a. Then by (5.3)

and thus
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Estimation of B2

Using again Young’s inequality we obtain

We further impose that r  03B1 4. Then by (5.3)

and

Estimation of B4

We first write

and using the fact that |u|2 03B12+|u|2, |03C5|2 03B12+|03C5|2  1 because of (5.5), we deduce
that 

Estimation of B3

We use that

and thus |(u,0394u)|  |u||0394u|  C0393|u|2|~u|2 and similarly |~03C5,039403C5~| 
C0393|03C5|2|~03C5|2. Hence by (5.3)



-66-

Frédéric Hélein

We further require on r that C0393r2  1 4. Then

Conclusion

By choosing

we obtain usi

Hence (5.2) follows by choosing UMo : = {M ~ U’M0/~(M)|  r 1 where
satisfies (5.9). ~

6. A result related to capacity

We prove here the following result.

LEMMA 6.1. - Let 03A9 be an open subset of Rm, for m  2. Let

p E C1(03A9,R) be a function satisfying 0  A  03C1  B  ~. Let a E 03A9,
03B50 &#x3E; 0 such that Bm(a, 03B50) C 03A9 and, for all 03B5 ~ (0, 03B50), 03A903B5 := 03A9 / Bm(a, e).

Let (~03B5)03B5~(0,03B50) be a family of functions ~03B5 E C2(03A903B5) n C0(03A903B5) such that

where M &#x3E; 0 is a constant independant of 03B5. Then for all compact K C
03A9 B {a} and for 03B5 E (0,03B50) such that K C 03A903B5, the restriction of ~03B5 on h
converges to 0 in L1(K) when 03B5 tends to 0.

Proof. - A first step consists in proving that the energy of ~03B5,
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converges to 0 when 6’ tends to 0. This is a very standard result which can
be checked as follows: we know that 0, is energy minimizing and hence that
E03B5  A03B5[f], for all f E C2(03A903B5) ~C0(03A903B5) such that f = M on ~Bm(a, s) and
f = 0 on ~03A9. One can choose for f 03C503B5(x) := M~(x)G03B5(x - a), where x E
C2(03A903B5) satisfies 0  ~  1, suppx C Bm(a, so), X = 1 on Bm(a, 03B50/2) and
|~~|  4/03B50 and where Gg is the Green function on Rn (Gg(x) := log|x| log 03B5 if

m = 2 and G03B5(x) := 03B5m-2 |x|m-2 if m  3). Then a straightforward computation
shows that lim,-o A03B5 [03C503B5] = 0. Hence

Second we consider, for all s E [0, M], the level sets

Note that the maximum principle implies that 0, takes values in [0, M].
Sard’s Theorem implies that the set Vc := {s E [0, M]/~x E 03A903B5 such that
~03B5(x) = s and ~~03B5(x) = 0} (critical values) is negligible (moreover it is also
closed(I)). And Vs E [0,M] B Vc, 9Ç2’ = {x E 03A903B5/~03B5(x) = s} is a smooth
submanifold. We let rs be the exterior part of ~03A9s03B5 so that we have the
splitting 

Using the equation (6.1) we observe that, Vs, s’ ~ [0, M] B Vc such that
s  s’,

where dHm-1 is the (m - 1)-dimensional Hausdorff measure. Here we have
used in the last line the fact that, on rs and 0393s’, ~~03B5 is parallel (and of
opposite orientation) to the normal vector v. This implies that the function

We now use the coarea formula to obtain

(1) and Vc C (0, AI) because of the Hopf maximum principle
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Thus we deduce that, using (6.3),

We now let F03B5 : [0, M] ~ [0, oo) be the function defined by

Obviously F03B5 is a decreasing function and so F’03B5 is a nonpositive measure
We can decompose this measure as F’03B5 = (F’03B5)03B1 + (F’03B5)s, where (F’03B5)a i
the absolutely continuous part of F’03B5 and (F’03B5)s is the singular part of F’03B5
Moreover F03B5 is differentiable on [0, M] B Vc with

and supp(F:)s C Vc. We deduce from this identity and from (6.4), by using
the Cauchy-Schwarz inequality, that Vs E [0, M] B Vc,

Hence

We observe that this inequality extends on the whole interval [0, M] in the
sense of measure: Vc is Lebesgue negligeable and if s is a singular point of
F:, then the above inequality holds since the left hand side is a function. We
next exploit (6.5) together with the isoperimetric inequality for the subset

. 03A9s03B5 U Bm(a,03B5) C Rm and its boundary rs :

Then (6.5) and (6.6) imply

in the sense of measure on [0, M].
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The case m = 2

Equation (6.7) then implies

Hence for any compact K ~ 03A9 B {a} and for 03B5 small enough, by using the
coarea formula, we have

which implies that ~~03B5~L1(K) tends to 0 when c ~ 0 because tends to
oo, because of (6.2). Hence the Lemma is proved in this case.

The case m  2

Let us denote by j3 := 2m-1 m - 1 E (0,1). We deduce analogously to the
preceding case that

and thus

which leads to the same conclusion.

7. The proof of the main theorem

We conclude this paper by proving Theorem 1.1. Let u be a continuous
map from H to N and assume that u is C2 and harmonic with values in
(Y, hij) on 03A9 B {a}. Using Theorem 5.1 with Mo = u(a) we deduce that
there exists a neighbourhood Uu(a) of u(a) in N such (5.2) holds for any
pair of harmonic maps into (U~(a), hij). We hence can restrict u to a ball
B"2 (a, R), where R is chosen so that u(Bm(a,R)) C Uu(a). Then we use the
existence result 3: we deduce that there exists some R2 E (0, R) such that,
for any r E (0, R2) there exists a map u E C2,03B1(Bm(a, r)) ~ C0,03B1(Bm(a,r))
which is harmonic into (Uu(a), hij) and which coincides with u on ~Bm(a, r).
Then we choose some r E (0, R2) and we identify u o u and u o u
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as in Theorem 5.1. Note that it is clear that there exists some A E (0, oo)
such that |u|, |u|  A on Bm(a,r). Now let

where a has been chosen as in Theorem 5.1. For any 6; &#x3E; 0 such that

Bm2(a,03B5) c Bm(a,r), we consider the map ~03B5 E C2(Bm(a,r) / Bm(a,03B5)) n
C0(Bm(a,r) B Bm (a, 03B5) ) which is the solution to

where

ai

Clearly we have f  ~03B5 on ~(Bm(a, r) B Bm (a, 03B5) ) and Theorem 5.1 implies
that -div (03C1~f)  0 = -div (03C1~~03B5) on Bm (a, r) Bm(a, e). Hence the
maximum principle implies that f  ~03B5 on Bm(a,r) / Bm(a,03B5). Now if we
fix a compact subset K C Bm(a,r) B {a} and suppose that s is sufficiently
small so that K C Bm(a,r) B Bm(a, 03B5), the inequality f  ~03B5 on K implies

~f~L1(K)  ~~03B5~L1(K).

Letting s tend to 0 and using Lemma 6.1 we deduce that ~f~L1(K) = 0-
Since K is arbitrary and f is continuous on Bm(a, r), we conclude f = 0
on Bm(a, r). Hence u coincides with u on Bm(a, r). Thus u is C2,a on
Bm(a, r). D
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