Comparison principle and Liouville type results for singular fully nonlinear operators
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 13 (2004) no. 2, pp. 261-287.
@article{AFST_2004_6_13_2_261_0,
     author = {Birindelli, Isabeau and Demengel, Fran\c{c}oise},
     title = {Comparison principle and {Liouville} type results for singular fully nonlinear operators},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {261--287},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 13},
     number = {2},
     year = {2004},
     zbl = {02205624},
     mrnumber = {2126744},
     language = {en},
     url = {http://archive.numdam.org/item/AFST_2004_6_13_2_261_0/}
}
TY  - JOUR
AU  - Birindelli, Isabeau
AU  - Demengel, Françoise
TI  - Comparison principle and Liouville type results for singular fully nonlinear operators
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2004
DA  - 2004///
SP  - 261
EP  - 287
VL  - Ser. 6, 13
IS  - 2
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/item/AFST_2004_6_13_2_261_0/
UR  - https://zbmath.org/?q=an%3A02205624
UR  - https://www.ams.org/mathscinet-getitem?mr=2126744
LA  - en
ID  - AFST_2004_6_13_2_261_0
ER  - 
Birindelli, Isabeau; Demengel, Françoise. Comparison principle and Liouville type results for singular fully nonlinear operators. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 13 (2004) no. 2, pp. 261-287. http://archive.numdam.org/item/AFST_2004_6_13_2_261_0/

[1] Berestycki ( H. ), Capuzzo Dolcetta (I.), Nirenberg (L.). - Problèmes Elliptiques indéfinis et Théorèmes de Liouville non-linéaires, C. R. Acad. Sci. Paris Sér. I Math. 317, no. 10, p. 945-950 (1993). | MR 1249366 | Zbl 0820.35056

[2] Berestycki ( H.), Capuzzo Dolcetta (I.), Nirenberg (L.). - Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4, no. 1, p. 59-78 (1994). | MR 1321809 | Zbl 0816.35030

[3] Birindelli ( I.), Demengel (F.). - Some Liouville Theorems for the p-Laplacian, Elec. J. Differential Equations, Conference 08, 2002. | MR 1990294 | Zbl 1034.35031

[4] Wigniolle ( J. ). - A strong maximum principle for fully non linear degenerate operators, Prépublications de l'université de Cergy-Pontoise.

[5] Birindelli ( I.), Mitidieri (E.). - Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A 128, no. 6, p. 1217-1247 (1998). | MR 1664101 | Zbl 0919.35023

[6] L. Caffarelli ( L.), Cabré (X.). - Fully-nonlinear equations, Colloquium Publications 43, American Mathematical Society, Providence, RI (1995). | Zbl 0834.35002

[7] Chen (Y.G. ), Giga ( Y.), Goto (S.). - Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , Journal of Differential Geometry 33, p. 749-786 (1991). | MR 1100211 | Zbl 0696.35087

[8] Crandall ( M.G.), Ishii (H.), Lions (P.L.). - User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.)27, no. 1, p. 1-67 (1992). | MR 1118699 | Zbl 0755.35015

[9] Cutri (A.) , Leoni ( F.). - On the Liouville property for fully-nonlinear equations Annales de l'Institut H. Poincaré, Analyse non-linéaire , p. 219-245 (2000). | Numdam | MR 1753094 | Zbl 0956.35035

[10] Evans (C. ), Spruck (J.). - Motion of level sets by mean curvature, Journal of Diff. Geom. 33, p. 635-681 (1991). | MR 1100206 | Zbl 0726.53029

[11] Gidas (B.). - Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, Nonlinear Partial Differential equations in engineering and applied sciences, Eds. R. Sternberg, A. Kalinowski and J. Papadakis, Proc. Conf. Kingston, R.I 1979, Lect. Notes on pure appl. maths, 54, Decker, New York, p. 255-273 (1980). | MR 577096 | Zbl 0444.35038

[12] Ishii (H. ). - Viscosity solutions of non-linear partial differential equations, Sugaku Expositions vol 9, (1996). | MR 1426875 | Zbl 0968.35002

[13] Jensen (R. ). - The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101, p. 1-27 (1988). | MR 920674 | Zbl 0708.35019

[14] Jensen (R. ), Lions (P.L.), Souganidis (T.). - A uniqueness result for viscosity solutions of second order fully-nonlinear partial differential equations, Proc. Amer. Math. Soc. 102, p. 975-978 (1988). | MR 934877 | Zbl 0662.35048

[15] Juutinen ( P.), Lindquist (P.), Manfredi (J.). - On the equivalence of viscosity solutions and weak solutions for a quasi linear equation, SIAM J. Math. Anal. 33, no. 3, p. 699-717 (2001). | MR 1871417 | Zbl 0997.35022

[16] Mitidieri ( E.), Pohozaev (S.). - Absence of positive solutions for quasilinear elliptic problems in RN, (Russian Tr. Mat. Inst. Steklova 227 (1999), Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18, p. 192-222; translation in Proc. Steklov Inst. Math. 1999, no. 4 (227), p. 186-216. | Zbl 1056.35507

[17] Serrin (J. ), Zou ( H.). - Cauchy-Liouville and universal boundedness theorems for quasi-linear elliptic equations, Acta Math. 189, no. 1, p. 79-142 (2002). | MR 1946918 | Zbl 1059.35040

[18] Vasquez ( J.L.). - A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12, p. 191-202, (1984). | Zbl 0561.35003