@article{AFST_2005_6_14_4_663_0, author = {Gavrilov, Lubomir}, title = {Higher order {Poincar\'e-Pontryagin} functions and iterated path integrals}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {663--682}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 14}, number = {4}, year = {2005}, mrnumber = {2188587}, zbl = {1104.34024}, language = {en}, url = {http://archive.numdam.org/item/AFST_2005_6_14_4_663_0/} }
TY - JOUR AU - Gavrilov, Lubomir TI - Higher order Poincaré-Pontryagin functions and iterated path integrals JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2005 SP - 663 EP - 682 VL - 14 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://archive.numdam.org/item/AFST_2005_6_14_4_663_0/ LA - en ID - AFST_2005_6_14_4_663_0 ER -
%0 Journal Article %A Gavrilov, Lubomir %T Higher order Poincaré-Pontryagin functions and iterated path integrals %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2005 %P 663-682 %V 14 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://archive.numdam.org/item/AFST_2005_6_14_4_663_0/ %G en %F AFST_2005_6_14_4_663_0
Gavrilov, Lubomir. Higher order Poincaré-Pontryagin functions and iterated path integrals. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 14 (2005) no. 4, pp. 663-682. http://archive.numdam.org/item/AFST_2005_6_14_4_663_0/
[1] Geometrical methods in the theory of ordinary differential equations, Grundlehr. Math. Wiss. , vol. 250, Springer-Verlag , New York (1988). | MR | Zbl
-[2] Singularities of Differentiable Maps, vols. 1 and 2, Monographs in mathematics , Birkhäuser, Boston, 1985 and 1988.
, , -[3] Tangential Hilbert problem for Abel equation , preprint, 2003.
, -[4] On the center problem for ordinary differential equation, arXiv:math 0301339 (2003).
-[5] Algebras of iterated path integrals and fundamental groups, Trans. AMS 156, p. 359-379 (1971). | MR | Zbl
-[6] Iterated Path Integrals, Bull. AMS 83 (1977) 831-879. | MR | Zbl
-[7] Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergod. Theory and Dyn. Syst. 16, p. 87-96 (1996). | MR | Zbl
-[8] Local bifurcations of limit cycles, Abel equations and Liénard systems, in Normal Forms, Bifurcations and Finitness Problems in Differential Equations, NATO Science Series II, vol. 137, 2004.
-[9] Algebraic Topology, Springer , New York, 1995. | MR | Zbl
-[10] Petrov modules and zeros of Abelian integrals , Bull. Sci. Math. 122, no. 8, p. 571-584 (1998). | MR | Zbl
-[11] The displacement map associated to polynomial unfoldings of planar vector fields, arXiv:math.DS/0305301 (2003).
, -[12] The geometry of the mixed Hodge structure on the fundamental group, Proc. of Simposia in Pure Math., 46, p. 247-282 (1987). | MR | Zbl
-[13] Iterated integrals and algebraic cycles: examples and prospects. Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000), p. 55-118, Nankai Tracts Math., 5, World Sci. Publishing, River Edge, NJ, 2002. | MR | Zbl
-[14] The Theory of Groups, AMS Chelsea Publishing, 1976. | MR | Zbl
-[15] Mathematische probleme, Gesammelte Abhandlungen III, Springer-Verlag, Berlin, p. 403-479 (1935).
-[16] Selected topics in differential equations with real and complex time, in Normal Forms, Bifurcations and Finitness Problems in Differential Equations, NATO Science Series II , vol. 137, 2004, Kluwer. preprint, 2002. | MR
-[17] A generalization of Françoise's algorithm for calculating higher order Melnikov functions , Bull. Sci. Math. 126, p. 705-732 (2002). | MR | Zbl
, , -[18] A note on a generalization of Franoise's algorithm for calculating higher order Melnikov function, Bull. Sci. Math. 128, p. 749-760 (2004). | MR | Zbl
, , -[19] A generalization of the Jacobian variety , AMS Translations, Series 2, p. 187-196 (1969). | Zbl
-[20] The algebraic theory of group rings , Wiley, New York, 1977. | MR
-[21] Über Autoschwingungssysteme, die den Hamiltonischen nahe liegen, Phys. Z. Sowjetunion 6, 25-28 (1934) | Zbl
-; On dynamics systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz. 4, p. 234-238 (1934), in russian.
[22] Bifurcation of planar vector fields and Hilbert's sixteenth problem, Progress in Mathematics , vol. 164, Birkhäuser Verlag , Basel (1998). | MR | Zbl
-