Smoothing and occupation measures of stochastic processes
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 1, pp. 125-156.

Cet article est une révision d’un certain nombre de problèmes statistiques concernant les processus aléatoires à un paramètre continu. En général, on suppose que l’observable est une régularisation de la trajectoire du processus, obtenue par convolution avec un noyau détérministe. La plupart des résultats ici exposés est connue et presentée sans démonstration. Les énoncés des théorèmes contiennent des approximations de la mesure d’occupation, au premier et deuxième ordre, basées sur des fonctionnelles définies sur les régularisées des trajectoires. On considère diverses classes de processus, à savoir, le processus de Wiener, les processus gaussiens, les semi-martingales continues et les processus de Lévy. Nous avons inclus les détails de certaines applications statistiques.

This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process, Gaussian processes, continuous semi-martingales and Lévy processes. Some statistical applications are also included in the text.

@article{AFST_2006_6_15_1_125_0,
     author = {Wschebor, Mario},
     title = {Smoothing and occupation measures of stochastic processes},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {125--156},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     volume = {Ser. 6, 15},
     number = {1},
     year = {2006},
     doi = {10.5802/afst.1116},
     mrnumber = {2225750},
     zbl = {1121.62072},
     language = {en},
     url = {archive.numdam.org/item/AFST_2006_6_15_1_125_0/}
}
Wschebor, Mario. Smoothing and occupation measures of stochastic processes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 1, pp. 125-156. doi : 10.5802/afst.1116. http://archive.numdam.org/item/AFST_2006_6_15_1_125_0/

[A2] Azaïs, J.-M. Approximation des trajectoires et temps local des diffusions, Ann. Inst. H. Poincaré, B, Volume 25 (1989) no. 2, pp. 175-194 | Numdam | MR 1478717 | Zbl 0882.60018

[A1] Azaïs, J.-M. Conditions for convergence of number of crossings to the local time, Applications to stable processes with independent increments and to Gaussian processes, Probab. Math. Stat., Volume 11 (1990) no. 1, pp. 19-36 | MR 1416866 | Zbl 0885.60018

[A-F] Azaïs, J.-M.; Florens-Szmirou, D. Approximation du temps local des processus gaussiens stationnaires par régularisation des trajectoires, Probab. Th. Rel. Fields, Volume 76 (1987), pp. 121-132 | MR 1096937 | Zbl 0744.60091

[A-W1] Azaïs, J.-M.; Wschebor, M. Almost sure oscillation of certain random processes, Bernoulli, Volume 2 (1996) no. 3, pp. 257-270 | Numdam | MR 1001025 | Zbl 0674.60032

[A-W2] Azaïs, J.-M.; Wschebor, M.; Azéma, J.; Emery, M.; Yor, M. Oscillation presque sûre de martingales continues, Séminaires de Probabilités XXXI (Lecture Notes Math.) Volume 1655, Springer-Verlag, 1997, pp. 69-76 | MR 899448 | Zbl 0608.60034

[B] Brugière, P. Estimation de la variance d’un processus de diffusion dans le cas multidimensionel, Comptes R. Acad. Sc. Paris, Sér. I, Volume 312 (1991), pp. 999-1004 | MR 1310678 | Zbl 0812.60069

[B-I] Borodin, A. N.; Ibragimov, I. A. Limit theorems for functionals of random walks, Proc. Steklov Institute Math., AMS, Providence, RI, 1995 | MR 1644037 | Zbl 0985.60035

[B-L1] Berzin, C.; Leon, J.R. Weak convergence of the integrated number of level crossings to the local time of the Wiener process, Comptes R. Acad. Sc. Paris, Sér. I, Volume 319 (1994), pp. 1311-1316 | MR 1368394 | Zbl 0855.60001

[B-L-O] Berzin, C.; Leon, J.R.; Ortega, J. Level crossings and local time for regularized Gaussian processes, Probab. Math. Statist, Volume 18 (1998) no. 1, pp. 39-81 | MR 1222362 | Zbl 0794.60030

[B-W] Berzin, C.; Wschebor, M. Approximation du temps local des surfaces gaussiennes, Probab. Th. Rel. Fields, Volume 96 (1993), pp. 1-32 | MR 1113093 | Zbl 0751.62036

[C-R1] Csörgö, M.; Révész, P. Three strong approximations of the local time of a Wiener process and their applications to invariance, Limit Theorems in Probability and Statistics, Vol. I, II (Veszprém, 1982) (Coll. Math. Soc. J. Bolyai) Volume 36, North-Holland, Amsterdam, 1984, pp. 223-254 | MR 807563 | Zbl 0567.60075

[C-R2] Csörgö, M.; Révész, P. On strong invariance for local time of partial sums, Stoch. Proc. Appl., Volume 20 (1985), pp. 59-84 | MR 805116 | Zbl 0582.60073

[D-F] Dacunha-Castelle, D.; Florens-Zmirou, D. Estimation of the coefficient of a diffusion from discrete observations, Stochastics, Volume 19 (1986), pp. 263-284 | MR 872464 | Zbl 0626.62085

[F] Florens-Zmirou, D. On estimating the diffusion coefficient from discrete observations, J. Appl. Prob., Volume 30 (1993), pp. 790-804 | MR 684210 | Zbl 0519.60078

[F-T] Fristedt, B.; Taylor, S.J. Constructions of local time for a Markov process, Z. Wahr.verw. gebiete, Volume 62 (1983), pp. 73-112 | MR 1242012 | Zbl 0796.62070

[G-J] Génon-Catalot, V.; Jacod, J. On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. H. Poincaré, Prob. Stat., Volume 29 (1993), pp. 119-151 | EuDML 77447 | Numdam | MR 1204521 | Zbl 0770.62070

[G-J-L] Génon-Catalot, V.; Jeantheau, T.; Laredo, C. Limit theorems for discretely observed stochastic volatility models, Bernoulli, Volume 4 (1998) no. 3, pp. 283-304 | Zbl 0573.60003

[G-S] Guikhman, I.; Skorokhod, A. Introduction à la théorie des processus aléatoires, MIR, Moscow, 1980 | Numdam | MR 1204521 | Zbl 0770.62070

[H] Hoffmann, M. L p estimation of the diffusion coefficient, Bernoulli, Volume 5 (1999) no. 3, pp. 447-481 | MR 1653264 | Zbl 0916.60075

[I-M] Itô, K.; Mc Kean, H.P. Diffusion processes and their sample paths, Academic Press, 1965 | MR 1693608 | Zbl 0980.62073

[I-W] Ikeda, N.; Watanabe, S. Stochastic Differential Equations and Diffusion Processes, North Holland, 1982 | MR 1011252 | Zbl 0495.60005

[J] Jacod, J. Rates of convergence to the local time of a diffusion, Ann. Inst. H. Poincaré, Prob. Stat., Volume 34 (1998), pp. 505-544 | EuDML 77611 | Numdam | MR 199891 | Zbl 0911.60055

[J+] Jacod, J. Non-parametric kernel estimation of the diffusion coefficient of a diffusion, Scand. J. Statist., Volume 27 (2000) no. 1, pp. 83-96 | Numdam | MR 1632849 | Zbl 0911.60055

[K-S] Karatzas, I. Brownian motion and stochastic calculus, Springer-Verlag, 1998 | MR 1774045 | Zbl 0938.62085

[L-S] Lipster, R.S.; Shiryaev, A.N. Statistics of Random Processes, Vol. I, II. 2d ed., Springer-Verlag, 2001 | Zbl 0638.60065

[M-W1] Mordecki, E.; Wschebor, M. Smoothing of paths and weak approximation of the occupation measure of Lévy processes (2005) (Pub. Mat. Uruguay, to appear) | Zbl 1008.62072

[M-W2] Mordecki, E.; Wschebor, M. Approximation of the occupation measure of Lévy processes, Comptes Rendus de l’Académie des Sciences, Paris, Sér. I, Volume 340 (2005), pp. 605-610 | MR 2138712 | Zbl 1065.60046

[N-W] Nualart, D.; Wschebor, M. Intégration par parties dans l’espace de Wiener et approximation du temps local, Probab. Th. Rel. Fields, Volume 90 (1991), pp. 83-109 | MR 2138712 | Zbl 1065.60046

[P-W1] Perera, G.; Wschebor, M. Crossings and occupation measures for a class of semimartingales, Ann. Probab., Volume 26 (1998) no. 1, pp. 253-266 | MR 1124830 | Zbl 0727.60052

[P-W2] Perera, G.; Wschebor, M. Inference on the Variance and Smoothing of the Paths of Diffusions, Ann. Inst. H. Poincaré, Volume 38 (2002) no. 6, pp. 1009-1022 | EuDML 77734 | MR 1617048 | Zbl 0943.60019

[PR] Prakasa Rao, B.L.S Semimartingales and their Statistical Inference, Chapman & Hall, 1999 | Numdam | MR 1955349 | Zbl 1011.62083

[R] Révész, P. Local time and invariance, Lecture Notes in Math. (1981) no. 861, pp. 128-145 | MR 1689166 | Zbl 0960.62090

[W1] Wschebor, M. Régularisation des trajectoires et approximation du temps local, C.R. Acad. Sci. Paris, Sér. I (1984), pp. 209-212 | MR 655268 | Zbl 0456.60029

[W2] Wschebor, M. Surfaces aléatoires. Mesure géométrique des ensembles de niveau, Lecture Notes Math., Volume 1147, Springer-Verlag, Berlin, 1985 | MR 741097 | Zbl 0584.60086

[W3] Wschebor, M. Crossings and local times of one-dimensional diffusions, Pub. Mat. Uruguay (1990) no. 3, pp. 69-100 | MR 871689 | Zbl 0573.60017

[W4] Wschebor, M. Sur les accroissements du processus de Wiener, C. R. Acad. Sci. Paris, Sér. I, Volume 315 (1992), pp. 1293-1296 | Zbl 0770.60075

[W5] Wschebor, M. Almost sure weak convergence of the increments of Lévy processes,, Stoch. Proc. Appl., Volume 55 (1995), pp. 253-270 | MR 1194538 | Zbl 0770.60075