Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 2, p. 217-242

In this paper, using techniques of value distribution theory, we give a uniqueness theorem for meromorphic mappings of m into P n with truncated multiplicities and “few" targets. We also give a theorem of linear degeneration for such maps with truncated multiplicities and moving targets.

Dans cet article, on donne un théorème d’unicité pour des applications méromorphes de m dans P n avec multiplicités coupées et avec « peu de » cibles. On donne aussi un théorème de dégénération linéaire pour des telles applications avec multiplicités coupées et avec des cibles mobiles. Les preuves utilisent des techniques de la distribution des valeurs.

@article{AFST_2006_6_15_2_217_0,
     author = {Dethloff, Gerd and Tan, Tran Van},
     title = {Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 15},
     number = {2},
     year = {2006},
     pages = {217-242},
     doi = {10.5802/afst.1120},
     mrnumber = {2244216},
     zbl = {1111.32016},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2006_6_15_2_217_0}
}
Dethloff, Gerd; Tan, Tran Van. Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 2, pp. 217-242. doi : 10.5802/afst.1120. http://www.numdam.org/item/AFST_2006_6_15_2_217_0/

[1] Dethloff, G.; Tran Van Tan Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets (2004) (Preprint math.CV/0405557)

[2] Dethloff, G.; Tran Van Tan An extension of uniqueness theorems for meromorphic mappings (2004) (Preprint math.CV/0405558)

[3] Fujimoto, H. The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., Tome 58 (1975), pp. 1-23 | MR 393586 | Zbl 0313.32005

[4] Fujimoto, H. Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J., Tome 152 (1998), pp. 131-152 | MR 1659377 | Zbl 0937.32010

[5] Fujimoto, H. Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J., Tome 155 (1999), pp. 161-188 | MR 1711367 | Zbl 0946.32008

[6] Ji, S. Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math., Tome 135 (1988), pp. 323-348 | MR 968616 | Zbl 0629.32022

[7] Manh, D. Q. Unique range sets for holomorphic curves, Acta Math. Vietnam, Tome 27 (2002), pp. 343-348 | MR 1979813 | Zbl 1049.32021

[8] Nevanlinna, R. Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math., Tome 48 (1926), pp. 367-391

[9] Ru, M.; Stoll, W. The Second Main Theorem for moving targets, J. Geom. Anal., Tome 1 (1991), pp. 99-138 | MR 1113373 | Zbl 0732.30025

[10] Ru, M. A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc., Tome 129 (2002), pp. 2701-2707 | MR 1838794 | Zbl 0977.32013

[11] Smiley, L. Geometric conditions for unicity of holomorphic curves, Contemp. Math., Tome 25 (1983), pp. 149-154 | MR 730045 | Zbl 0571.32002

[12] Tu, Z.-H. Uniqueness problem of meromorphic mappings in several complex variables for moving targets, Tohoku Math. J., Tome 54 (2002), pp. 567-579 | MR 1936268 | Zbl 1027.32017

[13] Yao, W. Two meromorphic functions sharing five small functions in the sense E ¯ (k) (β,f)=E ¯ (k) (β,g), Nagoya Math. J., Tome 167 (2002), pp. 35-54 | MR 1924718 | Zbl 1032.30022