In this article, we consider boundary problem for semilinear symmetric hyperbolic systems in several space dimensions perturbated by a small viscosity. This theme is tackled in [12] and the inviscid limit is described by WKB-like asymptotic expansions. The latter involve characteristic and non characteristic boundary layers. Here, we give three improvements :
- we consider expansions with a few terms (for example with one term),
- we also look at the initial boundary value problem and at compatibilities between initial and boundaries data,
- the interaction between the non characteristic boundary layer and the characteristic one is pushed further.
On s’intéresse à des problèmes mixtes pour des systèmes symétriques hyperboliques multidimensionnels semilinéaires perturbés par une petite viscosité. La description à la limite non visqueuse recquiert des développements du type BKW mettant en évidence une couche limite caractéristique (CLC) et une couche limite non caractéristique (CLNC). Ce thème traité dans [12] est ici enrichi de trois améliorations :
- l’étude inclut des développements ayant peu de termes (comme un seul terme),
- on étudie aussi bien la propagation que le problème de Cauchy et les conditions de compatibilité des données,
- l’étude de l’interaction CLC-CLNC est approfondie.
@article{AFST_2006_6_15_2_323_0, author = {Sueur, Franck}, title = {Couches limites semilin\'eaires}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {6e s{\'e}rie, 15}, number = {2}, year = {2006}, pages = {323-380}, doi = {10.5802/afst.1124}, mrnumber = {2244220}, zbl = {pre05176314}, language = {fr}, url = {http://www.numdam.org/item/AFST_2006_6_15_2_323_0} }
Sueur, Franck. Couches limites semilinéaires. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 2, pp. 323-380. doi : 10.5802/afst.1124. http://www.numdam.org/item/AFST_2006_6_15_2_323_0/
[1] Perturbations singulières et prolongements maximaux d’opérateurs positifs, Arch. Rational Mech. Anal., Tome 53 (1973/74), pp. 69-100 | MR 348247 | Zbl 0281.47028
[2] Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels ; théorèmes d’approximation ; application à l’équation de transport, Ann. Sci. École Norm. Sup. (4), Tome 3 (1970), pp. 185-233 | Numdam | MR 274925 | Zbl 0202.36903
[3] Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer. Math. Soc. (1982) | MR 645322 | Zbl 0485.35010
[4] Couche limite dans un modèle de ferromagnétisme, Comm. Partial Differential Equations, Tome 27 (2002) no. (7-8, pp. 1467-1495 | MR 1924474 | Zbl 1021.35120
[5] Quelques contributions mathématiques en optique non linéaire, École Polytechnique (1994) (Ph. D. Thesis)
[6] On the stability of boundary layers of incompressible Euler equations, J. Differential Equations, Tome 164 (2000) no. 1, pp. 180-222 | MR 1761422 | Zbl 0958.35106
[7] On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math., Tome 53 (2000) no. 9, pp. 1067-1091 | MR 1761409 | Zbl 1048.35081
[8] Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations, Tome 143 (1998) no. 1, pp. 110-146 | MR 1604888 | Zbl 0896.35078
[9] Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations, Tome 15 (1990) no. 5, pp. 595-645 | MR 1070840 | Zbl 0712.35061
[10] Ondes multidimensionnelles -stratifiées et oscillations, Duke Math. J., Tome 68 (1992) no. 3, pp. 401-446 | MR 1194948 | Zbl 0837.35086
[11] Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Anal., Tome 6 (1993) no. 3, pp. 241-269 | MR 1201195 | Zbl 0780.35017
[12] Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites, Ann. Inst. Fourier (Grenoble), Tome 45 (1995) no. 4, pp. 973-1006 | Numdam | MR 1359836 | Zbl 0831.34023
[13] Linear partial differential operators, Springer Verlag, Berlin (1976) | MR 404822 | Zbl 0321.35001
[14] Justification of multidimensional single phase semilinear geometric optics, Trans. Amer. Math. Soc., Tome 330 (1992) no. 2, pp. 599-623 | MR 1073774 | Zbl 0771.35010
[15] Nonstationary flows of viscous and ideal fluids in , J. Functional Analysis, Tome 9 (1972), pp. 296-305 | MR 481652 | Zbl 0229.76018
[16] Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., Tome 34 (1981) no. 4, pp. 481-524 | MR 615627 | Zbl 0476.76068
[17] Stability of multidimensional shocks (Cours de DEA)
[18] Stability of small viscosity noncharacteristic boundary layers (Cours de DEA)
[19] Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems (Preprint) | MR 2056854 | Zbl 1074.35066
[20] Characteristic initial-boundary value problems for symmetric hyperbolic systems, Osaka J. Math., Tome 35 (1998) no. 3, pp. 629-657 | MR 1648392 | Zbl 0942.35108
[21] Singular symmetric positive first order differential operators, J. Math. Mech., Tome 15 (1966), pp. 235-271 | MR 186902 | Zbl 0141.28701
[22] Boundary value problems as limits of problems in all space, Séminaire Goulaouic-Schwartz (1978/1979), École Polytechnique, Palaiseau (1979), pp. 1-17 (Exp. No. 3) | Numdam | MR 557514 | Zbl 0435.35052
[23] Boundary value problems with nonuniformly characteristic boundary, J. Math. Pures Appl. (9), Tome 73 (1994) no. 4, pp. 347-353 | MR 1290491 | Zbl 0832.35026
[24] Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., Tome 291 (1985) no. 1, pp. 167-187 | MR 797053 | Zbl 0549.35099
[25] Inviscid boundary conditions and stability of viscous boundary layers, Asymptot. Anal., Tome 26 (2001) no. 3-4, pp. 285-306 | MR 1844545 | Zbl 0977.35081
[26] A symmetric positive system with nonuniformly characteristic boundary, Differential Integral Equations, Tome 11 (1998) no. 4, pp. 605-621 | MR 1666202 | Zbl 1131.35324 | Zbl 01453651
[27] Full regularity of solutions to a nonuniformly characteristic boundary value problem for symmetric positive systems, Adv. Math. Sci. Appl., Tome 10 (2000) no. 1, pp. 39-55 | MR 1769182 | Zbl 0955.35052
[28] Highly oscillatory multidimensional shocks, Comm. Pure Appl. Math., Tome 52 (1999) no. 2, pp. 129-192 | MR 1653450 | Zbl 0929.35090
[29] Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. École Norm. Sup. (4), Tome 33 (2000) no. 3, pp. 383-432 | Numdam | MR 1775187 | Zbl 0962.35118