Minkowski sums and Brownian exit times
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 1, p. 37-47

If C is a domain in R n , the Brownian exit time of C is denoted by T C . Given domains C and D in R n this paper gives an upper bound of the distribution function of T C+D when the distribution functions of T C and T D are known. The bound is sharp if C and D are parallel affine half-spaces. The paper also exhibits an extension of the Ehrhard inequality

Si C est un domaine de R n , le temps de sortie brownien de C est noté T C . Donnant domaines C et D de R n cet article montre une borne supérieure pour la fonction de répartition de T C+D quand les fonctions de répartition de T C et T D sont connues. En plus l’article exhibe une généralisation de l’inégalité d’Ehrhard.

@article{AFST_2007_6_16_1_37_0,
     author = {Borell, Christer},
     title = {Minkowski sums and Brownian exit times},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 16},
     number = {1},
     year = {2007},
     pages = {37-47},
     doi = {10.5802/afst.1137},
     zbl = {1148.60062},
     mrnumber = {2325590},
     zbl = {pre05247237},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2007_6_16_1_37_0}
}
Borell, Christer. Minkowski sums and Brownian exit times. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 1, pp. 37-47. doi : 10.5802/afst.1137. http://www.numdam.org/item/AFST_2007_6_16_1_37_0/

[1] Borell (Ch.).— Greenian potentials and concavity, Math. Ann. 272, p. 155-160 (1985). | MR 794098 | Zbl 0584.31003

[2] Borell (Ch.).— The Ehrhard inequality, C. R. Acad. Sci. Paris, Ser. I 337, p. 663-666 (2003). | MR 2030108 | Zbl 1031.60013

[3] Carlen (E. A.), Kerce (C.).— On the cases of equality in Bobkov’s inequality and Gaussian rearrangement, Calc. Var. 13, p. 1-18 (2001). | MR 1854254 | Zbl 1009.49029

[4] Ehrhard (A.).— Symétrisation dans l’espace de Gauss, Math. Scand. 53, p. 281-301 (1983). | MR 745081 | Zbl 0542.60003

[5] Ehrhard (A.).— Eléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes. Annales de l’Institut Henri Poincaré 22, p. 149-168 (1986). | Numdam | MR 850753 | Zbl 0595.60020

[6] Karatzas (I.), Shreve (S. E.).— Brownian Motion and Stochastic Calculus. Second Edition, Springer-Verlag 1991. | MR 1121940 | Zbl 0734.60060

[7] Landau (H. J.), Shepp (L. A.).— On the supremum of a Gaussian process, Sankhyā 32, ser A, p. 369-378 (1970). | MR 286167 | Zbl 0218.60039

[8] Latała (R. A.).— On some inequalities for Gaussian measures. Proceedings of the ICM, 2, p. 813-822 (2002). | Zbl 1015.60011

[9] Sudakov (V. N.), Tsirelson (B. S.).— Extremal properties of half-spaces for spherically-invariant measures, Zapiski Nauchn, Seminarov LOMI 41, p. 14-24 (1974) (translated in J. Soviet Math. 9, p. 9-18 (1978)). | MR 365680 | Zbl 0395.28007

[10] Yurinsky (V.).— Sums and Gaussian Vectors. Lecture Notes in Mathematics 1617. Springer-Verlag 1995. | MR 1442713 | Zbl 0846.60003