Real analytic manifolds in n with parabolic complex tangents along a submanifold of codimension one
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 1, p. 1-64

We will classify n-dimensional real submanifolds in n which have a set of parabolic complex tangents of real dimension n-1. All such submanifolds are equivalent under formal biholomorphisms. We will show that the equivalence classes under convergent local biholomorphisms form a moduli space of infinite dimension. We will also show that there exists an n-dimensional submanifold M in n such that its images under biholomorphisms (z 1 ,,z n )(rz 1 ,,rz n-1 ,r 2 z n ), r>1, are not equivalent to M via any local volume-preserving holomorphic map.

Nous classifions les sous-variétés réelles analytiques de dimension n dans n , qui ont un ensemble de points de tangence complexe paraboliques de dimension réelle n-1. Ces sous variétés sont toutes équivalentes via biholomorphisme formel. Nous montrons que les classes d’équivalence sous changement de variables par biholomorphisme local (convergent) forment un ’espace de modules’ de dimension infinie. Nous montrons aussi qu’il existe une sous-variété M de dimension n dans n , dont les images par les biholomorphismes (z 1 ,,z n )(rz 1 ,,rz n-1 ,r 2 z n ), r>1, ne sont pas équivalentes à M via biholomorphisme local préservant le volume.

@article{AFST_2009_6_18_1_1_0,
     author = {Ahern, Patrick and Gong, Xianghong},
     title = {Real analytic manifolds in ${\mathbb{C}}^n$ with parabolic complex tangents along a submanifold of codimension one},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 18},
     number = {1},
     year = {2009},
     pages = {1-64},
     doi = {10.5802/afst.1204},
     mrnumber = {2518102},
     zbl = {1182.32013},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2009_6_18_1_1_0}
}
Ahern, Patrick; Gong, Xianghong. Real analytic manifolds in ${\mathbb{C}}^n$ with parabolic complex tangents along a submanifold of codimension one. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 1, pp. 1-64. doi : 10.5802/afst.1204. http://www.numdam.org/item/AFST_2009_6_18_1_1_0/

[1] Bishop (E.).— Differentiable manifolds in complex Euclidean space, Duke Math. J., 32, p. 1-22 (1965). | MR 200476 | Zbl 0154.08501

[2] Écalle (J.).— Les fonctions résurgentes, I, II. Publications Mathématiques d’Orsay 81, 5, 6, 1-247, p. 248-531, Université de Paris-Sud, Département de Mathématique, Orsay (1981). | Zbl 0499.30035

[3] Gong (X.).— On the convergence of normalizations of real analytic surfaces near hyperbolic complex tangents, Comment. Math. Helv. 69, no.4, p. 549-574 (1994). | MR 1303227 | Zbl 0826.32012

[4] Gong (X.).— Real analytic submanifolds under unimodular transformations, Proc. Amer. Math. Soc. 123, no.1, p. 191-200 (1995). | MR 1231299 | Zbl 0821.32012

[5] Gong (X.).— Divergence of the normalization for real Lagrangian surfaces near complex tangents, Pacific J. Math. 176, no. 2, p. 311–324 (1996). | MR 1434993 | Zbl 0879.32008

[6] Huang (X.) and Yin (W.).— A Bishop surface with a vanishing Bishop invariant, preprint.

[7] Malgrange (B.).— Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Bourbaki Seminar, Vol. 1981/1982, pp. 59-73, Astérisque, p. 92-93, Soc. Math. France, Paris (1982). | Numdam | MR 689526 | Zbl 0526.58009

[8] Moser (J.K.) and Webster (S.M.).— Normal forms for real surfaces in 2 near complex tangents and hyperbolic surface transformations, Acta Math., 150, p. 255-296 (1983). | MR 709143 | Zbl 0519.32015

[9] Voronin (S.M.).— Analytic classification of germs of conformal mappings (,0)(,0), Functional Anal. Appl. 15, no. 1, p. 1-13 (1981). | MR 609790 | Zbl 0463.30010

[10] Voronin (S.M.).— The Darboux-Whitney theorem and related questions, in Nonlinear Stokes phenomena, p. 139–233, Adv. Soviet Math., 14, Amer. Math. Soc., Providence, RI, (1993). | MR 1206044 | Zbl 0789.58015

[11] Webster (S.M.).— Holomorphic symplectic normalization of a real function, Ann. Scuola Norm. Sup. di Pisa, 19, p. 69-86 (1992). | Numdam | MR 1183758 | Zbl 0763.58010