Some results on the well-posedness for systems with time dependent coefficients
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 2, p. 247-284

We consider hyperbolic systems with time dependent coefficients and size 2 or 3. We give some sufficient conditions in order the Cauchy Problem to be well-posed in 𝒞 and in Gevrey spaces.

On considère des systèmes hyperboliques dont les coefficients ne dépendent que du temps. On donne des conditions suffisantes pour que le problème de Cauchy soit bien posé en 𝒞 et dans les espaces de Gevrey

@article{AFST_2009_6_18_2_247_0,
     author = {D'Abbicco, Marcello and Taglialatela, Giovanni},
     title = {Some results on the well-posedness for systems with time dependent coefficients},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 18},
     number = {2},
     year = {2009},
     pages = {247-284},
     doi = {10.5802/afst.1206},
     mrnumber = {2562829},
     zbl = {1183.35191},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2009_6_18_2_247_0}
}
D’Abbicco, Marcello; Taglialatela, Giovanni. Some results on the well-posedness for systems with time dependent coefficients. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 2, pp. 247-284. doi : 10.5802/afst.1206. http://www.numdam.org/item/AFST_2009_6_18_2_247_0/

[B] Bronšteĭn (M. D.).— Smoothness of roots of polynomials depending on parameters, Siberian Math. J. 20 (1980) 347-352, translation from Sibirsk. Mat. Zh. 20 p. 493-501 (1979). | MR 537355 | Zbl 0429.30007

[C] Colombini (F.).— Quelques remarques sur le problème de Cauchy pour des équations faiblement hyperboliques, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), École Polytech., Palaiseau, 1992, Exp. No. XIII. | Numdam | MR 1191920 | Zbl 0779.35069

[CIO] Colombini (F.), Ishida (H.), and Orrú (N.).— On the Cauchy problem for finitely degenerate hyperbolic equations of second order, Ark. Mat. 38, p. 223-230 (2000). | MR 1785400 | Zbl 1073.35145

[CJS] Colombini (F.), Jannelli (E.) and Spagnolo (S.).— Well posedness in the Gevrey Classes of the Cauchy Problem for a Non Strictly Hyperbolic Equation with Coefficients Depending On Time, Ann. Scu. Norm. Sup. Pisa, 10, p. 291-312 (1983). | Numdam | MR 728438 | Zbl 0543.35056

[CN1] Colombini (F.) and Nishitani (T.).— Two by two strongly hyperbolic systems and Gevrey classes, Ann. Univ. Ferrara Sez. VII (N.S.) 45, suppl. (1999), p. 79-108 (2000). | MR 1806490 | Zbl 0993.35061

[CN2] —.— Systèmes 2 fois 2 fortement hyperboliques dans 𝒞 et dans les classes de Gevrey, C. R. Acad. Sci. Paris Sér. I Math. 330, p. 969-972 (2000). | MR 1779688 | Zbl 0956.35076

[CO] Colombini (F.) and Orrú (N.).— Well-posedness in 𝒞 for some weakly hyperbolic equations, J. Math. Kyoto Univ. 39, p. 399-420 (1999). | MR 1718730 | Zbl 1007.35045

[CS] Colombini (F.) and Spagnolo (S.).— An example of a weakly hyperbolic Cauchy problem not well posed in 𝒞 , Acta Math. 148, p. 243-253 (1982). | MR 666112 | Zbl 0517.35053

[CT] Colombini (F.) and Taglialatela (G.).— Levi conditions for higher order operators with finite degeneracy, J. Math. Kyoto Univ. 46 (2006). | MR 2320353 | Zbl 1145.35079

[DAK] D’Ancona (P.) and Kinoshita (T.).— On the wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order, Math. Nach. 278, p. 1147-1162 (2005). | MR 2155966 | Zbl 1078.35065

[DAKS1] D’Ancona (P.), Kinoshita (T.), and Spagnolo (S.).— Weakly hyperbolic systems with Hölder continuous coefficients, J. Differ. Equations 203, p. 64-81 (2004). | MR 2070386 | Zbl 1068.35065

[DAKS2] —.— On the Well-Posedness of the Cauchy Problem for 2×2 weakly hyperbolic systems, Osaka J. Math. 45, p. 921-939 (2008).

[DAR] D’Ancona (P.) and Racke (R.).— Weakly hyperbolic equations in domains with boundaries, Nonlinear Anal. 33, p. 455-472 (1998). | MR 1635708 | Zbl 0933.34067

[DAS1] D’Ancona (P.) and Spagnolo (S.).— On pseudosymmetric hyperbolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), p. 397-418 (1998). | Numdam | MR 1655523 | Zbl 1014.35055

[DAS2] —.— Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Unione Mat. Ital., Sez. B Artic Ric. Mat. (8) 1, p. 169-185 (1998). | MR 1618976 | Zbl 0916.35063

[DAS3] —.— A remark on uniformly symmetrizable systems, Adv. in Math. 158, p. 18-25 (2001). | MR 1814897 | Zbl 1195.35203

[D] Demay (Y.).— Paramètrix pour des systèmes hyperboliques du premier ordre à multiplicité constante, J. Math. Pures Appl., IX. Sér. 56, p. 393-422 (1977). | MR 466986 | Zbl 0379.35068

[G] Gårding (L.).— Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85, p. 1-62 (1951). | MR 41336 | Zbl 0045.20202

[IY] Ishida (H.) and Yagdjian (K.).— On a sharp Levi condition in Gevrey classes for some infinitely degenerate hyperbolic equations and its necessity, Publ. Res. Inst. Math. Sci. 38, no. 2, p. 265-287 (2002). | MR 1903740 | Zbl 1028.35089

[I] Ivrii (V.Ja.).— Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, Sib. Math. J. 17, p. 921-931 (1977). | Zbl 0404.35068

[KS] Kinoshita (T.) and Spagnolo (S.).— Hyperbolic equations with non analytic coefficients, Math. Ann. 336, p. 551-569 (2006). | MR 2249759 | Zbl 1103.35064

[L] Larsson (E.).— Generalized hyperbolicity, Arkiv för Matematik 7, p. 11-32 (1967). | MR 221062 | Zbl 0183.41302

[M] Mandai (T.).— Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ. 21, p. 115-118 (1985). | MR 840968

[Ma] Matsumoto (W.).— On the condition for the hyperbolicity of systems with double characteristics roots. I and II, J. Math. Kyoto Univ. 21, p. 47-84, p. 251-271 (1981). | MR 606312 | Zbl 0487.35057

[Me] Mencherini (L.).— Il Problema di Cauchy per sistemi lineari di primo ordine debolmente iperbolici, Ph.D. Thesis, University of Pisa.

[MS1] Mencherini (L.) and Spagnolo (S.).— Gevrey well-posedness for pseudosymmetric systems with lower order terms, Hyperbolic differential operators and related problems (V. Ancona and J. Vaillant, eds.), Lecture Notes in Pure and Appl. Math., vol. 233, Marcel Dekker, New York, NY, (2003), p. 67-81. | MR 2004859 | Zbl 1058.35144

[MS2] —.— Well-posedness of 2×2 systems with 𝒞 -coefficients, Hyperbolic problems and related topics (F. Colombini and T. Nishitani, eds.), Grad. Ser. Anal, International Press, Somerville, MA, 2003, Proceedings of the conference, Cortona, Italy, September 10-14, (2002), p. 235-241. | MR 2056853 | Zbl 1054.35023

[MS3] —.— Uniformly symmetrizable 3×3 matrices, Linear Algebra Appl. 382, p. 25-38 (2004). | MR 2050097 | Zbl 1056.15012

[N] Nishitani (T.).— Hyperbolicity of two by two systems with two independent variables, Comm. P.D.E. 23, p. 1061-1110 (1998). | MR 1632796 | Zbl 0913.35079

[O] Orrù (N.).— On a weakly hyperbolic equation with a term of order zero, Annales de la Faculté des Sciences de Toulouse Sér. 6, 6, p. 525-534 (1997). | Numdam | MR 1610911 | Zbl 0895.35057

[ST] Shinkai (K.) and Taniguchi (K.).— Fundamental solution for a degenerate hyperbolic operator in Gevrey classes, Publ. Res. Inst. Math. Sci. 28, p. 169-205 (1992). | MR 1152755 | Zbl 0820.35155

[S] Spagnolo (S.).— On the Absolute Continuity of the Roots of Some Algebraic Equation, Ann.Univ.Ferrara, Suppl. XLV, p. 327-337 (1999). | MR 1806507 | Zbl 0993.30004

[T1] Tarama (S.).— On the second order hyperbolic equations degenerating in the infinite order. Example, Math. Japon. 42, p. 523-533 (1995). | MR 1363842 | Zbl 0837.35097

[T2] —.— Note on the Bronshtein theorem concerning hyperbolic polynomials, Sci. Math. Jpn. 63, p. 247-285 (2006). | MR 2213130 | Zbl 1106.26016

[W] Wakabayashi (S.).— Remarks on hyperbolic polynomials, Tsukuba J. Math. 10, p. 17-28 (1986). | MR 846411 | Zbl 0612.35005