On s’intéresse à des problèmes hyperboliques linéaires dont les coefficients sont discontinus au travers de l’hypersurface non-caractéristique On prouve alors, sous une hypothèse de stabilité, la convergence, à la limite à viscosité évanescente, vers la solution d’un problème hyperbolique limite bien posé. Notre premier résultat concerne des systèmes multi-D, par morceaux. Notre second résultat montre que, pour l’opérateur avec (cas exclu de notre premier résultat), notre critère de stabilité est satisfait, et qu’une unique solution à petite viscosité se dégage de notre approche. Nos deux résultats sont nouveaux et incluent une analyse asymptotique à tout ordre ainsi qu’un théorème de stabilité.
We introduce small viscosity solutions of hyperbolic systems with discontinuous coefficients accross the fixed noncharacteristic hypersurface Under a geometric stability assumption, our first result is obtained, in the multi-D framework, for piecewise smooth coefficients. For our second result, the considered operator is with (expansive case not included in our first result), thus resulting in an infinity of weak solutions. Proving that this problem is uniformly Evans-stable, we show that our viscous approach successfully singles out a solution. Both results are new and incorporates a stability result as well as an asymptotic analysis of the convergence at any order, which results in an accurate boundary layer analysis.
@article{AFST_2009_6_18_2_397_0, author = {Fornet, Bruno}, title = {Viscous approach for {Linear} {Hyperbolic} {Systems} with {Discontinuous} {Coefficients}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {397--443}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 18}, number = {2}, year = {2009}, doi = {10.5802/afst.1209}, zbl = {1182.35030}, mrnumber = {2562832}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1209/} }
TY - JOUR AU - Fornet, Bruno TI - Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2009 SP - 397 EP - 443 VL - 18 IS - 2 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1209/ DO - 10.5802/afst.1209 LA - en ID - AFST_2009_6_18_2_397_0 ER -
%0 Journal Article %A Fornet, Bruno %T Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2009 %P 397-443 %V 18 %N 2 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1209/ %R 10.5802/afst.1209 %G en %F AFST_2009_6_18_2_397_0
Fornet, Bruno. Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. 2, pp. 397-443. doi : 10.5802/afst.1209. http://archive.numdam.org/articles/10.5802/afst.1209/
[1] Bachmann (F.).— Analysis of a scalar conservation law with a flux function with discontinuous coefficients, Adv. Diff. Eq. 11-12, p. 1317-1338 (2004). | MR | Zbl
[2] Bachmann (F.), Vovelle (J.).— Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients, C.P.D.E, 31, p. 371-395 (2006). | MR | Zbl
[3] Bouchut (F.), James (F.).— One-dimensional transport equations with discontinuous coefficients, Nonlin. Anal., 32, p. 891-933 (1998). | MR | Zbl
[4] Bouchut (F.), James (F.), Mancini (S.).— Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), IV, p. 1-25 (2005). | Numdam | MR
[5] Chazarain (J.), Piriou (A.).— Introduction to the theory of linear partial differential equations. translated from the french, Studies in Mathematics and its Applications, 14 , North Holland Publishing Co., Amsterdam-New York,1982. | MR | Zbl
[6] Crasta (G.), LeFloch (P. G.).— Existence result for a class of nonconservative and nonstrictly hyperbolic systems, Commun. Pure Appl. Anal., 1(4), p. 513-530 (2002). | MR | Zbl
[7] DiPerna (R.J.), Lions (P.-L.).— Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98, p. 511-547 (1989). | MR | Zbl
[8] Fornet (B.).— Two Results concerning the Small Viscosity Solution of Linear Scalar Conservation Laws with Discontinuous Coefficients, HAL (2007).
[9] Fornet (B.).— The Cauchy problem for 1-D linear nonconservative hyperbolic systems with possibly expansive discontinuity of the coefficient: a viscous approach, Vol 245 pp. 2440-2476 (2008). | MR | Zbl
[10] Gallouët (T.).— Hyperbolic equations and systems with discontinuous coefficients or source terms, 10 pages, Proceedings of Equadiff-11, Bratislava, Slovaquia (July 25-29, 2005).
[11] Guès (O.), Métivier (G.), Williams (M.), Zumbrun (K.).— Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, Arch. Rat. Mech. Anal. 175 p. 151-244 (2004). | MR | Zbl
[12] Guès (O.), Williams (M.).— Curved shocks as viscous limits: a boundary problem approach, Indiana Univ. Math. J., 51 (2002), 421-450. | MR | Zbl
[13] Hayes (B. T.), LeFloch (P. G.).— Measure solutions to a strictly hyperbolic system of conservation laws Nonlinearity, 9(6), p. 1547-1563 (1996). | MR | Zbl
[14] LeFloch (P. G.).— An existence and uniqueness result for two nonstrictly hyperbolic systems. In Nonlinear evolution 271 equations that change type, vol. 27 of IMA Vol. Math. Appl. (1990), 126-138. Springer, New York. | MR | Zbl
[15] LeFloch (P. G.), Tzavaras (A.E.).— Representation of weak limits and definition of nonconservartive products, SIAM J. Math. Anal. 30, p. 1309-1342 (1999). | MR | Zbl
[16] Métivier (G.).— Small Viscosity and Boundary Layer Methods : Theory, Stability Analysis, and Applications, Birkhauser (2003). | MR | Zbl
[17] Métivier (G.), Zumbrun (K.).— Large Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems, Mem. Amer. Math. Soc. 175, no. 826, vi+107 pp (2005). | MR | Zbl
[18] Métivier (G.), Zumbrun (K.).— Symmetrizers and Continuity of Stable Subspaces for Parabolic-Hyperbolic Boundary Value Problems, Disc. Cont. Dyn. Syst., 11, p. 205-220 (2004). | MR | Zbl
[19] Poupaud (F.), Rascle (M.).— Measure solutions to the linear multidimensional transport equation with discontinuous coefficients, Comm. Diff. Equ. 22, p. 337-358 (1997). | MR | Zbl
[20] Rousset (F.).— Viscous approximation of strong shocks of systems of conservation laws, SIAM J. Math. Anal. 35 (2003), 492-519. | MR | Zbl
Cité par Sources :