Mesures limites pour l’équation de Helmholtz dans le cas non captif
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, p. 445-479

This paper is devoted to the study of the limit measures associated with the solution of the Helmholtz equation with a source term which concentrates on a point. The potential is assumed to be C and the operator non trapping. The solution of the semi-classical Schrödinger equation is written micro-locally as a finite sum of Lagrangian distributions. Under a geometrical hypothesis, which generalizes the virial assumption, this representation implies that the limit measure exists and satisfies standard properties. Finally, one gives an example of operator which does not satisfy the geometrical hypothesis and for which the limit measure is not unique. The case of two source terms is also treated

Cet article est consacré à l’étude des mesures limites associées à la solution de l’équation de Helmholtz avec un terme source se concentrant en un point. Le potentiel est supposé C et l’opérateur non-captif. La solution de l’équation de Schrödinger semi-classique s’écrit alors micro-localement comme somme finie de distributions lagrangiennes. Sous une hypothèse géométrique, qui généralise l’hypothèse du viriel, on en déduit que la mesure limite existe et qu’elle vérifie des propriétés standard. Enfin, on donne un exemple d’opérateur qui ne vérifie pas l’hypothèse géométrique et pour lequel la mesure limite n’est pas unique. Le cas de deux termes sources est aussi traité.

@article{AFST_2009_6_18_3_445_0,
     author = {Bony, Jean-Fran\c cois},
     title = {Mesures limites pour l'\'equation de Helmholtz dans le cas non captif},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 18},
     number = {3},
     year = {2009},
     pages = {445-479},
     doi = {10.5802/afst.1210},
     mrnumber = {2582438},
     zbl = {1186.35032},
     language = {fr},
     url = {http://www.numdam.org/item/AFST_2009_6_18_3_445_0}
}
Bony, Jean-François. Mesures limites pour l’équation de Helmholtz dans le cas non captif. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 445-479. doi : 10.5802/afst.1210. http://www.numdam.org/item/AFST_2009_6_18_3_445_0/

[1] Benamou (J. D.), Castella (F.), Katsaounis (T.), Perthame (B.).— High frequency limit of the Helmholtz equations, Rev. Mat. Iberoamericana 18, no 1, p. 187–209 (2002). | MR 1924691 | Zbl 1090.35165

[2] Burq (N.).— Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not., no 5, p. 221–241 (2002). | MR 1876933 | Zbl 1161.81368

[3] Castella (F.).— The radiation condition at infinity for the high-frequency Helmholtz equation with source term : a wave-packet approach, J. Funct. Anal. 223, no 1, p. 204–257 (2005). | MR 2139886 | Zbl 1072.35159

[4] Castella (F.), Jecko (T.).— Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and C 2 potential, J. Differential Equations 228, no 2, p. 440–485 (2006). | MR 2289541 | Zbl 1105.35091

[5] Castella (F.), Jecko (T.), Knauf (A.).— Semiclassical resolvent estimates for Schrödinger operators with coulomb singularities, Ann. Henri Poincaré 9, n 4, p. 775–815 (2008). | MR 2413203 | Zbl 1162.81019

[6] Castella (F.), Perthame (B.), Runborg (O.).— High frequency limit of the Helmholtz equation. II. Source on a general smooth manifold, Comm. Partial Differential Equations 27, no 3-4, p. 607–651 (2002). | MR 1900556 | Zbl pre01786302

[7] Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press (1999). | MR 1735654 | Zbl 0926.35002

[8] Fedoriuk (M.), Maslov (V.).— Semiclassical approximation in quantum mechanics, Mathematical Physics and Applied Mathematics, vol. 7, D. Reidel Publishing Co., Dordrecht (1981). | MR 634377 | Zbl 0458.58001

[9] Fouassier (E.).— High frequency analysis of Helmholtz equations : case of two point sources, SIAM J. Math. Anal. 38, no 2, p. 617–636 (2006). | MR 2237164 | Zbl 1110.35089

[10] Fouassier (E.).— High frequency limit of Helmholtz equations : refraction by sharp interfaces, J. Math. Pures Appl. (9) 87, no 2, p. 144–192 (2007). | MR 2296804 | Zbl 1119.35096

[11] Gérard (C.).— A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal. 254, n 11, p. 2707–2724 (2008). | MR 2414218 | Zbl 1141.47017

[12]  Gérard (C.), Martinez (A.).— Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math. 306, no 3, p. 121–123 (1988). | MR 929103 | Zbl 0672.35013

[13] Gérard (C.), Martinez (A.).— Semiclassical asymptotics for the spectral function of long-range Schrödinger operators, J. Funct. Anal. 84, no 1, p. 226–254 (1989). | MR 999499 | Zbl 0692.35069

[14] Hörmander (L.).— The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 256, Springer-Verlag, Distribution theory and Fourier analysis (1990). | MR 1065993 | Zbl 0712.35001

[15] Hörmander (L.).— The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften, vol. 275, Springer-Verlag, Fourier integral operators, Corrected reprint of the 1985 original (1994). | MR 781537 | Zbl 0612.35001

[16] Isozaki (H.), Kitada (H.).— Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32, no 1, p. 77–104 (1985). | MR 783182 | Zbl 0582.35036

[17] Isozaki (H.), Kitada (H.).— A remark on the microlocal resolvent estimates for two body Schrödinger operators, Publ. Res. Inst. Math. Sci. 21, no 5, p. 889–910 (1985). | MR 817149 | Zbl 0611.35090

[18] Ivrii (V.).— Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag (1998). | MR 1631419 | Zbl 0906.35003

[19] Mourre (E.).— Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78, no 3, p. 391–408 (1980/81). | MR 603501 | Zbl 0489.47010

[20] Perthame (B.), Vega (L.).— Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal. 164, no 2, p. 340–355 (1999). | MR 1695559 | Zbl 0932.35048

[21] Robert (D.).— Autour de l’approximation semi-classique, Progress in Mathematics, vol. 68, Birkhäuser Boston Inc. (1987). | MR 897108 | Zbl 0621.35001

[22] Robert (D.), Tamura (H.).— Semiclassical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. H. Poincaré Phys. Théor. 46, no 4, p. 415–442 (1987). | Numdam | MR 912158 | Zbl 0648.35066

[23] Robert (D.), Tamura (H.).— Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, J. Funct. Anal. 80, no 1, p. 124–147 (1988). | MR 960227 | Zbl 0663.47009

[24] Robert (D.), Tamura (H.).— Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits, Ann. Inst. Fourier 39, no 1, p. 155–192 (1989). | Numdam | MR 1011982 | Zbl 0659.35026

[25] Wang (X. P.).— Microlocal estimates of the Schrödinger equation in semi-classical limit, Partial differential equations and applications, Sémin. congr., vol. 15 Math. France, p. 265–308, (2007). | MR 2385136 | Zbl 1132.35425

[26] Wang (X. P.), Zhang (P.).— High-frequency limit of the Helmholtz equation with variable refraction index, J. Funct. Anal. 230, no 1, p.116–168 (2006). | MR 2184186 | Zbl 1141.35016