Solutions globales des équations d’Einstein-Maxwell
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, p. 495-540

Adapting a method of Lindblad and Rodnianski, we prove existence of global solutions for the Einstein-Maxwell equations in space dimension n3. We consider small enough smooth and asymptotically flat initial data. We use harmonic gauge and Lorenz gauge.

En adaptant une méthode de Lindblad et Rodnianski, on prouve l’existence de solutions globales pour les équations d’Einstein-Maxwell en dimension d’espace n3. Les données initiales considérées sont lisses, asymptotiquement euclidiennes et suffisamment petites. On utilise la jauge harmonique et la jauge de Lorenz.

@article{AFST_2009_6_18_3_495_0,
     author = {Loizelet, Julien},
     title = {Solutions globales des \'equations d'Einstein-Maxwell},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 18},
     number = {3},
     year = {2009},
     pages = {495-540},
     doi = {10.5802/afst.1212},
     mrnumber = {2582443},
     zbl = {1200.35303},
     language = {fr},
     url = {http://www.numdam.org/item/AFST_2009_6_18_3_495_0}
}
Loizelet, Julien. Solutions globales des équations d’Einstein-Maxwell. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 495-540. doi : 10.5802/afst.1212. http://www.numdam.org/item/AFST_2009_6_18_3_495_0/

[1] Bizoń (P.), Chmaj (T.), and Schmidt (B.G.).— Critical behavior in vacuum gravitational collapse in 4+1 dimensions, Phys. Rev. Lett. 95, 071102, gr-qc/0506074 (2005). | MR 2167019

[2] Choquet-Bruhat (Y.).— Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, p. 144-225 (1952). | Zbl 0049.19201

[3] Christodoulou (D.).— Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math. 39, p. 267-282 (1986). MR MR820070 (87c :35111) | MR 820070 | Zbl 0612.35090

[4] Christodoulou (D.) and Klainerman (S.).— The global nonlinear stability of the Minkowski space, Princeton UP, (1993). | MR 1316662 | Zbl 0827.53055

[5] Emparan (R.) and Reall (H.S.).— Black rings, hep-th/0608012, (2006). | MR 2270099 | Zbl 1108.83001

[6] Hollands (S.) and Ishibashi (A.).— Asymptotic flatness and Bondi energy in higher dimensional gravity, Jour. Math. Phys. 46, 022503, 31, gr-qc/0304054 (2005). MR MR2121709 (2005m :83039) | MR 2121709 | Zbl 1076.83010

[7] Hollands (S.) and Wald (R.M.).— Conformal null infinity does not exist for radiating solutions in odd spacetime dimensions, Class. Quantum Grav. 21, p. 5139-5145, gr-qc/0407014, (2004). MR MR2103245 (2005k :83039) | MR 2103245 | Zbl 1081.83030

[8] Hörmander (L.).— Lectures on Nonlinear Hyperbolic Differential Equations,Springer, (1986). | MR 1466700 | Zbl 0881.35001

[9] Hörmander (L.).— On the fully nonlinear Cauchy problem with small data. II, Microlocal analysis and nonlinear waves (Minneapolis, MN, 1988-1989), IMA Vol. Math. Appl., vol. 30, Springer, New York, 1991, pp. 51-81. MR MR1120284 (94c :35127) | MR 1120284 | Zbl 0783.35036

[10] Klainerman (S.).— Global Existence for Nonlinear Wave Equations. Communications on Pure and Applied Mathematics, Vol. XXXIII, p. 43-100 (1980). | MR 544044 | Zbl 0405.35056

[11] Klainerman (S.).— Uniform Decay Estimates and the Lorentz Invariance of the Classical wave Equation.Communications on Pure and Applied Mathematics, Vol. XXXVIII, p. 321-332 (1985). | MR 784477 | Zbl 0635.35059

[12] Klainerman (S.).— The null condition and global existence to nonlinear wave equations. Lectures in Applied Mathematics 23, p. 293-326 (1986). | MR 837683 | Zbl 0599.35105

[13] Lindblad (H.) and Rodnianski (I.).— Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256, p. 43-110 (2005). | MR 2134337 | Zbl 1081.83003

[14] Lindblad (H.) and Rodnianski (I.).— The global stability of Minkowski space-time in harmonic gauge. ArXiv :math.AP/0411109.

[15] Ta-Tsien Li and Yun Mei Chen.— Global classical solutions for nonlinear evolution equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 45, Longman Scientific & Technical, Harlow (1992). MR MR1172318 (93g :35002) | MR 1172318 | Zbl 0787.35002