Ensembles de Rosenthal et propriété de Radon-Nikodym relative
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, p. 599-610

Let G be a metrizable compact abelian group, Γ its dual group and let ΛΓ be a Rosenthal set. We show that L Λ (G,Y * )=C Λ (G,Y * ) whenever Y * is a Banach space with Radon-Nikodym property and C Λ (G,Y * ) is weakly sequentially complete. We deduce a condition implying that the product of two Rosenthal sets is still a Rosenthal set in product group. Then we introduce the relative Radon-Nikodym property RN-Λ, which generalizes the analytic Radon-Nikodym property. We prove that RN-Λ property for L 1 (G)/L Λ c 1 (G) implies that Λ is finite. This gives a new and easy proof that L 1 (𝕋)/H 1 (𝕋) does not possess the analytic Radon-Nikodym property.

Soient G un groupe abélien compact métrisable, Γ son groupe dual et ΛΓ un ensemble de Rosenthal. Nous montrons que L Λ (G,Y * )=C Λ (G,Y * ), lorsque Y * est un espace de Banach ayant la propriété de Radon-Nikodym et C Λ (G,Y * ) est faiblement séquentiellement complet. Nous en déduisons une condition suffisante pour que le produit de deux ensembles de Rosenthal en soit encore un pour le groupe produit. Ensuite nous introduisons la propriété de Radon-Nikodym relative RN-Λ, une généralisation de la propriété de Radon-Nikodym analytique. Nous montrons que si L 1 (G)/L Λ c 1 (G) a la propriété RN-Λ, alors Λ est fini. Cela nous permet de retrouver très simplement le fait que L 1 (𝕋)/H 1 (𝕋) n’a pas la propriété de Radon-Nikodym analytique

@article{AFST_2009_6_18_3_599_0,
     author = {Daher, Mohammad},
     title = {Ensembles de Rosenthal et propri\'et\'e de Radon-Nikodym relative},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 18},
     number = {3},
     year = {2009},
     pages = {599-610},
     doi = {10.5802/afst.1216},
     mrnumber = {2582440},
     zbl = {1188.43005},
     language = {fr},
     url = {http://www.numdam.org/item/AFST_2009_6_18_3_599_0}
}
Daher, Mohammad. Ensembles de Rosenthal et propriété de Radon-Nikodym relative. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 599-610. doi : 10.5802/afst.1216. http://www.numdam.org/item/AFST_2009_6_18_3_599_0/

[BL] Benyamini (Y.), Lindenstrauss (J.).— Geometric nonlinear functional analysis, Vol. 1, American Mathematical Society Colloquium Publications 48, American Mathematical Society, Providence, RI (2000). | MR 1727673 | Zbl 0946.46002

[BD] Bukhvalov (A. V.), Danilevich (A. A.).— Boundary properties of analytic and harmonic functions with values in Banach spaces, Mat. Zametki 31, p. 203–214 (1982), no. 2  ; English translation Math. Notes 31, p. 104–110 (1982). | MR 649004 | Zbl 0496.30029

[D] Daher (M.).— Translations mesurables et ensembles de Rosenthal, Annales de la Fac. de Toulouse, vol. XIV, n  I, p. 105–121 (2005). | Numdam | MR 2118035 | Zbl 1071.43003

[DU] Diestel (J.), Uhl Jr (J. J.).— Vector measures, Math. Surveys N  15 (1977). | MR 453964 | Zbl 0369.46039

[Do] Dowling (P. N.).— Radon-Nikodym properties associated with subsets of countable discrete abelian groups, Trans. Amer. Math. Soc. 327, no. 2, p. 879-890 (1991). | MR 1053113 | Zbl 0771.46013

[DP1] Dressler (R. E.), Pigno (L.).— Rosenthal sets and Riesz sets, Duke Math. J. 41, p. 675–677 (1974). | MR 511044 | Zbl 0306.43006

[DP2] Dressler (R. E.), Pigno (L.).— Une remarque sur les ensembles de Rosenthal et Riesz, C. R. Acad. Sci. Paris Sér. A-B 280, p. A1281–A1282 (1975). | MR 374824 | Zbl 0299.43001

[E] Edgar (G. A.).— Banach spaces with the analytic Radon-Nikodym property and compact abelian groups, Almost evrywhere convergence (Columbus, OH, 1988), Academic Press, Boston, MA, p. 195–213 (1989). | MR 1035247 | Zbl 0692.46011

[G] Godefroy (G.).— On coanalytic families of sets in harmonic analysis, Illinois J. Math. 35, no. 2, p. 241–249 (1991). | MR 1091441 | Zbl 0703.43005

[HR] Hewitt (E.), Ross (K. A.).— Abstract harmonic analysis II, Springer-Verlag, Berlin-Heidelberg-New York (1970). | MR 262773 | Zbl 0213.40103

[LLQR] Lefèvre (P.), Li (D.), Queffélec (H.), Rodríguez-Piazza (L.).— Some translation-invariant Banach function spaces which contain c 0 , Studia Math. 163, no. 2, p. 137–155 (2004). | MR 2047376 | Zbl 1048.43004

[LR] Lefèvre (P.),Rodríguez-Piazza (L.).— Anal. 233, no. 2, p. 545–560 (2006). | MR 2214587 | Zbl 1089.43003

[L1] Li (D.).— A class of Riesz sets, Proc. Amer. Math. Soc. 119, p. 889–892 (1993). | MR 1176071 | Zbl 0796.43004

[L2] Li (D.).— On Hilbert sets and C Λ (G)-spaces with no subspace isomorphic to c 0 , Colloq. Math. 68, no. 1, p. 67–77 (1995). | MR 1311764 | Zbl 0848.43006

[L3] Li (D.).— A remark about Λ(p)-sets and Rosenthal sets, Proc. Amer. Math. Soc. 126, no. 11, p. 3329–3333 (1998). | MR 1459133 | Zbl 0907.43007

[LQR] Li (D.), Queffélec (H.), Rodríguez-Piazza (L.).— Some new thin sets of integers in harmonic analysis, J. Anal. Math. 86, p. 105–138 (2002). | MR 1894479 | Zbl 1018.43004

[LP1] Lust-Piquard (F.).— Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris 282, p. 833–835 (1976). | MR 404999 | Zbl 0324.43007

[LP2] Lust-Piquard (F.).— L’espace des fonctions presque-périodiques dont le spectre est contenu dans un ensemble compact dénombrable a la propriété de Schur, Colloq. Math. 41, p. 273–284 (1979). | MR 591934 | Zbl 0462.43007

[LP3] Lust-Piquard (F.).— Eléments ergodiques et totalement ergodiques dans L (G), Studia Math. 69, p. 191–225 (1981). | MR 647138 | Zbl 0476.43001

[LP4] Lust-Piquard (F.).— Bohr local properties of C Λ (T), Colloq. Math. 58, no. 1, p. 29–38 (1989). | MR 1028158 | Zbl 0694.43005

[N] Neuwirth (S.).— Two random constructions inside lacunary sets, Ann. Inst. Fourier (Grenoble) 49, no. 6, p. 1853–1867 (1999). | Numdam | MR 1738068 | Zbl 0955.42009

[OR] Odell (E.), Rosenthal (H. P.).— A double-dual characterization of separable Banach spaces containig 1 , Israel J. Math. 20, p. 375–384 (1975). | MR 377482 | Zbl 0312.46031

[P] Parthasarthy (T.).— Selection theorems and their applications, Lecture Notes in Math. Vol. 263, Springer-Verlag-Berlin New York (1972). | MR 417368 | Zbl 0239.54011

[R] Rosenthal (H. P.).— On trigonometric series associated with weak * -closed subspaces of continuous, J. Math. Mech. 17, p. 485–490 (1967). | MR 216229 | Zbl 0194.16703

[RS] Robdera (M.), Saab (P.).— Complete continuity properties of Banach spaces associated with subsets of a discrete abelian group, Glasgow Math. J. 43, p. 185-198 (2001). | MR 1838624 | Zbl 0992.46031

[Ru] Rudin (W.).— Invariant means on L , Studia Math. 44, p. 219–227 (1972). | MR 304975 | Zbl 0215.47004

[W] Watbled (F.).— Rosenthal sets for Banach valued functions, Arch. Math. 66, p. 479–489 (1996). | MR 1388098 | Zbl 0854.43007