Gauthier, Bertrand; Bay, Xavier
Spectral approach for kernel-based interpolation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6 : Tome 21 (2012) no. 3 , p. 439-479
MR 3076408 | Zbl 1269.47025
doi : 10.5802/afst.1341
URL stable : http://www.numdam.org/item?id=AFST_2012_6_21_3_439_0

Nous décrivons comment la résolution d’un problème d’interpolation à noyaux peut être associée à un problème spectral. Un opérateur intégral est défini à partir d’un plongement du sous-espace hilbertien considéré dans un espace de Hilbert auxiliaire composé de fonctions de carré intégrable. On obtient une représentation spectrale des éléments interpolants permettant leur approximation par troncature du spectre. À titre d’exemple, nous montrons comment cette approche peut être utilisée afin d’intégrer des informations de type conditions aux limites dans un modèle d’interpolation et en quoi elle offre une alternative intéressante pour la réduction de dimension.
We describe how the resolution of a kernel-based interpolation problem can be associated with a spectral problem. An integral operator is defined from the embedding of the considered Hilbert subspace into an auxiliary Hilbert space of square-integrable functions. We finally obtain a spectral representation of the interpolating elements which allows their approximation by spectral truncation. As an illustration, we show how this approach can be used to enforce boundary conditions in kernel-based interpolation models and in what it offers an interesting alternative for dimension reduction.

Bibliographie

[1] Aronszajn (N.).— Theory of reproducing kernels, Trans. Amer. Math. Soc., 63, p. 337-404 (1950). MR 51437 | Zbl 0037.20701

[2] Atteia (M.).— Hilbertian kernels and spline functions. North-holland, (1992). MR 1205348 | Zbl 0767.41015

[3] Baxendale (P.).— Gaussian measures on function spaces, American Journal of Mathematics, 98(4), p. 891-952 (1976). MR 467809 | Zbl 0384.28011

[4] Bourbaki (N.).— Eléments de mathematique: Chapitre 6, Intégration vectorielle, Hermann (1959). Zbl 0030.29002

[5] Berlinet (A.) and Thomas-Agnan (C.).— Reproducing kernel Hilbert spaces in probability and statistics, Springer Netherlands (2004). MR 2239907 | Zbl 1145.62002

[6] Cucker (F.) and Smale (S.).— On the mathematical foundations of learning, Bulletin (new series) of the American Mathematical Society, 39(1), p. 1-49 (2002). MR 1864085 | Zbl 0983.68162

[7] Dudley (R. M.), Feldman (J.), and Le Cam (L.).— On Seminorms and Probabilities, and Abstract Wiener Spaces, Annals of Mathematics, 93(2), p. 390-408 (1971). MR 279272 | Zbl 0193.44603

[8] Dudley (R. M.).— Sample functions of the Gaussian process, Springer (2010). MR 2742203

[9] Fortet (R. M.).— Les opérateurs intégraux dont le noyau est une covariance, Trabajos de Estad痴tica y de Investigación Operativa, 36, p. 133-144 (1985). Zbl 0733.47030

[10] Gauthier (B.).— Approche spectrale pour l’interpolation à noyaux et positivité conditionnelle, PhD thesis, Ecole des Mines de Saint-Etienne (2011).

[11] Gross (L.).— Abstract Wiener spaces, Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., 2, p. 31-42 (1967). MR 212152 | Zbl 0187.40903

[12] Niyogi (P.), Minh (H. Q.) and Yao (Y.).— Learning Theory, chapter Mercer’s Theorem, Feature Maps and Smoothing, pages 154-168. Springer Berlin/Heidelberg (2006). MR 2280604 | Zbl 1143.68554

[13] Janson (S.).— Gaussian Hilbert Spaces, Cambridge University Press (1997). MR 1474726 | Zbl 1143.60005

[14] Kuelbs (J.).— Expansions of vectors in a Banach space related to Gaussian measures, Proceedings of the American Mathematical Society, 27(2), p. 364-370 (1971). MR 267615 | Zbl 0226.60060

[15] Nashed (M.Z.) and Wahba (G.).— Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations, SIAM J. Math. Anal, 5(6), p. 974-987 (1974). MR 358405 | Zbl 0287.47009

[16] Parzen (E.).— Extraction and detection problems and reproducing kernel hilbert spaces, J. Soc. Ind. Appl. Math., Ser. A, Control, 1, p. 35-62 (1962). MR 143314 | Zbl 0199.21904

[17] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2008).

[18] Rajput (B.S.).— On Gaussian measures in certain locally convex spaces, Journal of Multivariate Analysis, 2(3), p. 282-306 (1972). MR 345156 | Zbl 0241.60005

[19] W Rudin (W.).— Analyse fonctionnelle, Ediscience International (1995).

[20] Rasmussen (C. E.) and Williams (C. K. I.).— Gaussian Processes for Machine Learning, The MIT Press (2006). MR 2514435 | Zbl 1177.68165

[21] Schwartz (L.).— Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés, J. Anal. Math., 13, p. 115-256 (1964). MR 179587 | Zbl 0124.06504

[22] Schwartz (L.).— Analyse Hilbertienne, Hermann (1979). MR 552779 | Zbl 0414.46017

[23] Stein (M.L.).— Interpolation of Spatial Data: some theory for kriging, Springer Verlag (1999). MR 1697409 | Zbl 0924.62100

[24] Talagrand (M.).— Mesures gaussiennes sur un espace localement convexe, Probability Theory and Related Fields, 64(2), p. 181-209 (1983). MR 714143 | Zbl 0498.60009

[25] Tarieladze (V.) and Vakhania (N.).— Disintegration of Gaussian measures and average-case optimal algorithms, Journal of Complexity, 23(4-6), p. 851-866 (2007). MR 2371996 | Zbl 1131.41010

[26] Wahba (G.).— Spline Models for Observational Data, SIAM (1990). MR 1045442 | Zbl 0813.62001

[27] Walsh (J. B.).— A note on uniform convergence of stochastic processes, in Proc. Amer. Math. Soc, volume 18, p. 129-132 (1967). MR 203792 | Zbl 0314.60025