On a theorem of Rees-Shishikura
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, p. 981-993

Rees-Shishikura’s theorem plays an important role in the study of matings of polynomials. It promotes Thurston’s combinatorial equivalence into a semi-conjugacy. In this work we restate and reprove Rees-Shishikura’s theorem in a more general form, which can then be applied to a wider class of postcritically finite branched coverings. We provide an application of the restated theorem.

Le théorème de Rees-Shishikura joue un rôle important dans l’étude des accouplements de polynômes. Il permet d’obtenir une semi-conjugaison à partir d’une equivalence combinatoire de Thurston. Dans ce travail, nous reformulons et redémontrons ce théorème dans un cadre plus général. Cette nouvelle version du théorème est applicable à une classe plus large de revêtements ramifiés postcritiquement finis. Nous en fournissons un exemple à la fin de notre article.

@article{AFST_2012_6_21_S5_981_0,
     author = {Cui, Guizhen and Peng, Wenjuan and Tan, Lei},
     title = {On a theorem of Rees-Shishikura},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 21},
     number = {S5},
     year = {2012},
     pages = {981-993},
     doi = {10.5802/afst.1359},
     mrnumber = {3088264},
     zbl = {1283.37050},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2012_6_21_S5_981_0}
}
Cui, Guizhen; Peng, Wenjuan; Tan, Lei. On a theorem of Rees-Shishikura. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, pp. 981-993. doi : 10.5802/afst.1359. http://www.numdam.org/item/AFST_2012_6_21_S5_981_0/

[1] Beardon (A. F.).— Iteration of rational functions, Graduate text in Mathemathics, vol. 132, Springer-Verlag, New York (1993). | MR 1128089 | Zbl 0742.30002

[2] Blokh (A.) and Levin (G.).— An inequality for laminations, Julia sets and ’growing trees’, Erg. Th. and Dyn. Sys., 22, p. 63-97 (2002). | MR 1889565 | Zbl 1067.37058

[3] Cui (G.), Peng (W.) and Tan (L.).— Renormalization and wandering continua of rational maps, arXiv: math/1105.2935.

[4] Douady (A.).— Systèmes dynamiques holomorphes, (Bourbaki seminar, Vol. 1982/83) Astérisque, p. 105-106, p. 39-63 (1983). | Numdam | MR 728980 | Zbl 0532.30019

[5] Douady (A.) and Hubbard (J. H.).— Étude dynamique des polynômes complexes, I, II, Publ. Math. Orsay (1984-1985). | Zbl 0552.30018

[6] Kiwi (J.).— Rational rays and critical portraits of complex polynomials, Preprint 1997/15, SUNY at Stony Brook and IMS. | MR 2697078

[7] Levin (G.).— On backward stability of holomorphic dynamical systems, Fund. Math., 158, p. 97-107 (1998). | MR 1656942 | Zbl 0915.58089

[8] Petersen (C. L.) and Meyer (D.).— On the notions of mating, to appear in Annales de la Faculté des Sciences de Toulouse.

[9] Pilgrim (K.) and Tan (L.).— Rational maps with disconnected Julia set, Astérisque 261, volume spécial en l’honneur d’A. Douady, p. 349-384 (2000). | MR 1755447 | Zbl 0941.30014

[10] Rees (M.).— A partial description of parameter space of rational maps of degree two: Part I, Acta Math., 168, p. 11-87 (1992). | MR 1149864 | Zbl 0774.58035

[11] Shishikura (M.).— On a theorem of M. Rees for matings of polynomials, in The Mandelbrot set, Theme and Variations, ed. Tan Lei, LMS Lecture Note Series 274, Cambridge Univ. Press, p. 289-305 (2000). | MR 1765095 | Zbl 1062.37039

[12] Tan (L.).— Matings of quadratic polynomials, Erg. Th. and Dyn. Sys., 12, p. 589-620 (1992). | MR 1182664 | Zbl 0756.58024

[13] Thurston (W.).— The combinatorics of iterated rational maps (1985), published in: ”Complex dynamics: Families and Friends”, ed. by D. Schleicher, A K Peters, p. 1-108 (2008). | MR 2508255