Topology of arrangements and position of singularities
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 2, p. 223-265

This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees) and the notion of essential coordinate components.

Ce travail est un version étendue du cours donné en Juin 2012 à Pau dans le cadre de l’École Arrangements in Pyrénées. School on hyperplane arrangements and related topics. Dans la première partie, nous rappelons comment calculer le groupe fondamental du complément d’un arrangement de droites. La deuxième partie est consacrée aux variétés caractéristiques des arrangements de droites. Deux aspects sont étudiés  : la relation avec la position des points singuliers (par rapport aux courbes projectives pour certains degrés fixés) et la notion de composantes coordonnées essentielles.

@article{AFST_2014_6_23_2_223_0,
     author = {Artal Bartolo, Enrique},
     title = {Topology of arrangements and position of singularities},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 23},
     number = {2},
     year = {2014},
     pages = {223-265},
     doi = {10.5802/afst.1406},
     mrnumber = {3205593},
     zbl = {06297892},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2014_6_23_2_223_0}
}
Artal Bartolo, Enrique. Topology of arrangements and position of singularities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 2, pp. 223-265. doi : 10.5802/afst.1406. http://www.numdam.org/item/AFST_2014_6_23_2_223_0/

[1] Arapura (D.).— Geometry of cohomology support loci for local systems. I, J. Algebraic Geom. 6, no. 3, p. 563-597 (1997). | MR 1487227 | Zbl 0923.14010

[2] Artal (E.).— Combinatorics and topology of line arrangements in the complex projective plane, Proc. Amer. Math. Soc. 121, no. 2, p. 385-390 (1994). | MR 1189536 | Zbl 0815.32020

[3] Artal (E.).— Sur les couples de Zariski, J. Algebraic Geom. 3, no. 2, p. 223-247 (1994). | MR 1257321 | Zbl 0823.14013

[4] Artal (E.), Carmona (J.), Cogolludo-Agustín (J.I.).— Braid monodromy and topology of plane curves, Duke Math. J. 118, no. 2, p. 261-278 (2003). | MR 1980995 | Zbl 1058.14053

[5] Artal (E.), Carmona (J.), Cogolludo-Agustín (J.I.).— Essential coordinate components of characteristic varieties, Math. Proc. Cambridge Philos. Soc. 136, no. 2, p. 287-299 (2004). | MR 2040575 | Zbl 1061.14022

[6] Artal (E.), Carmona (J.), Cogolludo-Agustín (J.I.), Marco (M.Á.). — Topology and combinatorics of real line arrangements, Compos. Math. 141, no. 6, p. 1578-1588 (2005). | MR 2188450 | Zbl 1085.32012

[7] Artal (E.), Carmona (J.), Cogolludo-Agustín (J.I.), Marco (M.Á.). — Invariants of combinatorial line arrangements and Rybnikov’s example, Singularity theory and its applications (S. Izumiya, G. Ishikawa, H. Tokunaga, I. Shimada, and T. Sano, eds.), Advanced Studies in Pure Mathematics, vol. 43, Mathematical Society of Japan, Tokyo (2007). | Zbl 1135.32025

[8] Artal (E.), Cogolludo-Agustín (J.I.), Matei (D.).— Characteristic varieties of quasi-projective manifolds and orbifolds, Geom. Topol. 17, p. 273-309 (2013). | MR 3035328 | Zbl 1266.32035

[9] Artal (E.), Cogolludo-Agustín (J.I.), Ortigas-Galindo (J.).— Kummer covers and braid monodromy, J. inst. Math. Jussieu.

[10] Artin (E.).— Theory of braids, Ann. of Math. (2) 48, p. 101-126 (1947). | MR 19087 | Zbl 0030.17703

[11] Arvola (W.A.).— The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31, no. 4, p. 757-765 (1992). | MR 1191377 | Zbl 0772.57001

[12] Barth (W.P.), Peters (C.A.M.), Van de Ven (A.).— Compact complex surfaces, Erg. der Math. und ihrer Grenz., A Series of Modern Surveys in Math., 3, vol. 4, Springer-Verlag, Berlin (1984). | MR 749574 | Zbl 1036.14016

[13] Carmona (J.).— Monodromía de trenzas de curvas algebraicas planas, Ph.D. thesis, Universidad de Zaragoza (2003).

[14] Chisini (O.).— Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser. 66, p. 1141-1155 (1933). | Zbl 0008.22001

[15] Cogolludo-Agustín (J.I.).— Braid monodromy of algebraic curves, Ann. Math. Blaise Pascal 18, no. 1, p. 141-209 (2011). | Numdam | MR 2830090 | Zbl 1254.32043

[16] Cohen (D.C.), Suciu (A.I.).— Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127, no. 1, p. 33-53 (1999). | MR 1692519 | Zbl 0963.32018

[17] Deligne (P.).— Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math., no. 40, p. 5-57 (1971). | Numdam | MR 498551 | Zbl 0219.14007

[18] Esnault (H.).— Fibre de Milnor d’un cône sur une courbe plane singulière, Invent. Math. 68, no. 3, p. 477-496 (1982). | MR 669426 | Zbl 0475.14018

[19] Esnault (H.), Viehweg (E.).— Revêtements cycliques, Algebraic threefolds (Varenna, 1981), Lecture Notes in Math., vol. 947, Springer, Berlin, p. 241-250 (1982). | MR 672621 | Zbl 0493.14012

[20] Esnault (H.), Viehweg (E.).— Revêtements cycliques. II (autour du théorème d’annulation de J. Kollár), Géométrie algébrique et applications, II (La Rábida, 1984), Travaux en Cours, vol. 23, Hermann, Paris, p. 81-96 (1987). | MR 907924 | Zbl 0632.14008

[21] Florens (V.), Guerville (B.), Marco (M.Á.).— On complex line arrangements and their boundary manifolds, Preprint available at arXiv:1305.5645v1 [math.GT] (2013).

[22] Fujita (T.).— On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29, no. 3, p. 503-566 (1982). | MR 687591 | Zbl 0513.14018

[23] Griffiths (P.A.), Harris (J.).— Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978, Pure and Applied Mathematics. | MR 507725 | Zbl 0836.14001

[24] Hamm (H.A.), Lê (D.T.).— Lefschetz theorems on quasiprojective varieties, Bull. Soc. Math. France 113, no. 2, p. 123-142 (1985). | Numdam | MR 820315 | Zbl 0602.14009

[25] Hironaka (E.).— Plumbing graphs for normal surface-curve pairs, Arrangements–Tokyo 1998, Adv. Stud. Pure Math., vol. 27, Kinokuniya, Tokyo, p. 127-144 (2000). | MR 1796896 | Zbl 1016.57016

[26] Hironaka (E.).— Boundary manifolds of line arrangements, Math. Ann. 319, no. 1, p. 17-32 (2001). | MR 1812817 | Zbl 0995.32016

[27] van Kampen (E.R.).— On the fundamental group of an algebraic curve, Amer. J. Math. 55, p. 255-260 (1933). | MR 1506962

[28] Libgober (A.).— Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49, no. 4, p. 833-851 (1982). | MR 683005 | Zbl 0524.14026

[29] Libgober (A.).— On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. 367, p. 103-114 (1986). | MR 839126 | Zbl 0576.14019

[30] Libgober (A.).— Invariants of plane algebraic curves via representations of the braid groups, Invent. Math. 95, no. 1, p. 25-30 (1989). | MR 969412 | Zbl 0674.14015

[31] Libgober (A.).— Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), Kluwer Acad. Publ., Dordrecht, p. 215-254 (2001). | MR 1866902 | Zbl 1045.14016

[32] Libgober (A.).— Non vanishing loci of Hodge numbers of local systems, Manuscripta Math. 128, no. 1, p. 1-31 (2009). | MR 2470184 | Zbl 1160.14004

[33] Loeser (F.), M. Vaquié (M.).— Le polynôme d’Alexander d’une courbe plane projective, Topology 29, no. 2, p. 163-173 (1990). | MR 1056267 | Zbl 0743.14013

[34] Moishezon (B.G.).— Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980), Lecture Notes in Math., vol. 862, Springer, Berlin, p. 107-192 (1981). | MR 644819 | Zbl 0476.14005

[35] Moishezon (B.G.), Teicher (M.).— Braid group technique in complex geometry. I. Line arrangements in 2 , Braids (Santa Cruz, CA, 1986), Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, p. 425-555 (1988). | MR 975093 | Zbl 0674.14019

[36] Mumford (D.).— The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math., no. 9, p. 5-22 (1961). | Numdam | MR 153682 | Zbl 0108.16801

[37] Neumann (W.D.).— A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268, no. 2, p. 299-344 (1981). | MR 632532 | Zbl 0546.57002

[38] Orlik (P.), Solomon (L.).— Combinatorics and topology of complements of hyperplanes, Invent. Math. 56, no. 2, p. 167-189 (1980). | MR 558866 | Zbl 0432.14016

[39] Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin (1992). | MR 1217488 | Zbl 0757.55001

[40] Rybnikov (G.).— On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl. 45, p. 137-148 (2011). | MR 2848779 | Zbl 1271.14085

[41] Sakuma (M.).— Homology of abelian coverings of links and spatial graphs, Canad. J. Math. 47, no. 1, p. 201-224 (1995). | MR 1319696 | Zbl 0839.57001

[42] Waldhausen (F.).— Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308-333; ibid. 4, p. 87-117 (1967). | MR 235576 | Zbl 0168.44503

[43] Zariski (O.).— On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51, p. 305-328 (1929). | MR 1506719

[44] Zariski (O.).— On the irregularity of cyclic multiple planes, Ann. of Math. (2) 32, no. 3, p. 485-511 (1931). | MR 1503012

[45] Zariski (O.).— On the Poincaré group of rational plane curves, Amer. J. Math. 58, p. 607-619 (1936). | MR 1507185