K(π,1) conjecture for Artin groups
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 23 (2014) no. 2, pp. 361-415.

Le but de cet article est de mettre ensemble une grande partie des résultats connus sur la conjecture du K(π,1) pour les groupes d’Artin et de les rendre accessibles aux non-spécialistes. Tout d’abord, ce texte est un exposé, contenant les définitions de base, les principaux résultats, des exemples et un aperçu historique. C’est aussi un texte qui devrait servir de référence dans le sujet et qui contient des démonstrations de la plupart des résultats énoncés. Certaines démonstrations et quelques résultats sont nouveaux. En outre, le texte, s’adressant à des non-spécialistes, est aussi complet que possible.

The purpose of this paper is to put together a large amount of results on the K(π,1) conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as self-contained as possible.

@article{AFST_2014_6_23_2_361_0,
     author = {Paris, Luis},
     title = {$K(\pi ,1)$ conjecture for {Artin} groups},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {361--415},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 23},
     number = {2},
     year = {2014},
     doi = {10.5802/afst.1411},
     zbl = {06297897},
     mrnumber = {3205598},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1411/}
}
TY  - JOUR
AU  - Paris, Luis
TI  - $K(\pi ,1)$ conjecture for Artin groups
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2014
SP  - 361
EP  - 415
VL  - 23
IS  - 2
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1411/
DO  - 10.5802/afst.1411
LA  - en
ID  - AFST_2014_6_23_2_361_0
ER  - 
%0 Journal Article
%A Paris, Luis
%T $K(\pi ,1)$ conjecture for Artin groups
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2014
%P 361-415
%V 23
%N 2
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://archive.numdam.org/articles/10.5802/afst.1411/
%R 10.5802/afst.1411
%G en
%F AFST_2014_6_23_2_361_0
Paris, Luis. $K(\pi ,1)$ conjecture for Artin groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 23 (2014) no. 2, pp. 361-415. doi : 10.5802/afst.1411. http://archive.numdam.org/articles/10.5802/afst.1411/

[1] Abramenko (P.), Brown (K. S.).— Buildings. Theory and applications. Graduate Texts in Mathematics, 248. Springer, New York (2008). | MR | Zbl

[2] Arnol’d (V. I.).— Certain topological invariants of algebraic functions. Trudy Moskov. Mat. Obšč. 21, p. 27-46 (1970). | MR | Zbl

[3] Bourbaki (N.).— Eléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV : Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre VI : Systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968). | MR | Zbl

[4] Brieskorn (E.).— Sur les groupes de tresses [d’après V. I. Arnol’d]. Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, p. 21-44. Lecture Notes in Math., Vol. 317, Springer, Berlin (1973). | Numdam | MR | Zbl

[5] Brieskorn (E.), Saito (K.).— Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, p. 245-271 (1972). | MR | Zbl

[6] Brown (K. S.).— Cohomology of groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin (1982). | MR | Zbl

[7] Callegaro (F.).— On the cohomology of Artin groups in local systems and the associated Milnor fiber. J. Pure Appl. Algebra 197, no. 1-3, p. 323-332 (2005). | MR | Zbl

[8] Callegaro (F.).— The homology of the Milnor fiber for classical braid groups. Algebr. Geom. Topol. 6, p. 1903-1923 (2006). | MR | Zbl

[9] Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of affine Artin groups and applications. Trans. Amer. Math. Soc. 360, no. 8, p. 4169-4188 (2008). | MR | Zbl

[10] Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of Artin groups of type A ˜ n ,B n and applications. Groups, homotopy and configuration spaces, 85-104, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry (2008). | MR | Zbl

[11] Callegaro (F.), Moroni (D.), Salvetti (M.).— The K(π,1) problem for the affine Artin group of type B ˜ n and its cohomology. J. Eur. Math. Soc. (JEMS) 12, no. 1, p. 1-22 (2010). | MR | Zbl

[12] Callegaro (F.), Salvetti (M.).— Integral cohomology of the Milnor fibre of the discriminant bundle associated with a finite Coxeter group. C. R. Math. Acad. Sci. Paris 339, no. 8, p. 573-578 (2004). | MR | Zbl

[13] Charney (R.), Davis (M. W.).— The K(π,1)-problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc. 8, no. 3, p. 597-627 (1995). | MR | Zbl

[14] Charney (R.), Davis (M. W.).— Finite K(π,1)’s for Artin groups. Prospects in topology (Princeton, NJ, 1994), p. 110-124, Ann. of Math. Stud., 138, Princeton Univ. Press, Princeton, NJ (1995). | MR | Zbl

[15] Charney (R.), Meier (J.), Whittlesey (K.).— Bestvina’s normal form complex and the homology of Garside groups. Geom. Dedicata 105, p. 171-188 (2004). | MR | Zbl

[16] Charney (R.), Peifer (D.).— The K(π,1)-conjecture for the affine braid groups. Comment. Math. Helv. 78, no. 3, 584-600 (2003). | MR | Zbl

[17] Cohen (F. R.).— The homology of C n+1 -spaces, n0. Lecture Notes in Math. 533, p. 207-353, Springer-Verlag, Berlin-New York (1976).

[18] Coxeter (H. S. M.).— Discrete groups generated by reflections. Ann. of Math. (2) 35, no. 3, p. 588-621 (1934). | MR | Zbl

[19] Coxeter (H. S. M.).— The complete enumeration of finite groups of the form R i 2 =(R i R j ) k i,j =1. J. London Math. Soc. 10, p. 21-25 (1935). | Zbl

[20] De Concini (C.), Procesi (C.), Salvetti (M.).— Arithmetic properties of the cohomology of braid groups. Topology 40, no. 4, p. 739-751 (2001). | MR | Zbl

[21] De Concini (C.), Procesi (C.), Salvetti (M.), Stumbo (F.).— Arithmetic properties of the cohomology of Artin groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, no. 4, p. 695-717 (1999). | Numdam | MR | Zbl

[22] De Concini (C.), Salvetti (M.).— Stability for the cohomology of Artin groups. Adv. Math. 145, no. 2, p. 291-305 (1999). | MR | Zbl

[23] De Concini (C.), Salvetti (M.).— Cohomology of Coxeter groups and Artin groups. Math. Res. Lett. 7, no. 2-3, p. 213-232 (2000). | MR | Zbl

[24] De Concini (C.), Salvetti (M.), Stumbo (F.).— The top-cohomology of Artin groups with coefficients in rank-1 local systems over Z. Special issue on braid groups and related topics (Jerusalem, 1995). Topology Appl. 78, no. 1-2, p. 5-20 (1997). | MR | Zbl

[25] Dehornoy (P.), Lafont (Y.).— Homology of Gaussian groups. Ann. Inst. Fourier (Grenoble) 53, no. 2, p. 489-540 (2003). | Numdam | MR | Zbl

[26] Deligne (P.).— Les immeubles des groupes de tresses généralisés. Invent. Math. 17, p. 273-302 (1972). | MR | Zbl

[27] Dobrinskaya (N. È.).— The Arnol’d-Thom-Pham conjecture and the classifying space of a positive Artin monoid. (Russian) Uspekhi Mat. Nauk 57 (2002), no. 6(348), 181-182. Translation in Russian Math. Surveys 57, no. 6, p. 1215-1217 (2002). | MR | Zbl

[28] Ellis (G.), Sköldberg (E.).— The K(π,1) conjecture for a class of Artin groups. Comment. Math. Helv. 85, no. 2, p. 409-415 (2010). | MR | Zbl

[29] Fox (R.), Neuwirth (L.).— The braid groups. Math. Scand. 10, 119-126 (1962). | MR | Zbl

[30] Fuks (D. B.).— Cohomology of the braid group mod 2. Funkcional. Anal. i Priložen. 4 (1970), no. 2, 62-73. Translation in Functional Anal. Appl. 4, p. 143-151 (1970). | MR | Zbl

[31] Godelle (E.), Paris (L.).— K(π,1) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups. Math. Z. 272, no. 3, p. 1339-1364 (2012). | MR

[32] Hatcher (A.).— Algebraic topology. Cambridge University Press, Cambridge (2002). | MR | Zbl

[33] Hendriks (H.).— Hyperplane complements of large type. Invent. Math. 79, no. 2, p. 375-381 (1985). | MR | Zbl

[34] Landi (C.).— Cohomology rings of Artin groups. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11, no. 1, p. 41-65 (2000). | MR | Zbl

[35] van der Lek (H.).— The homotopy type of complex hyperplane complements. Ph. D. Thesis, Nijmegen (1983).

[36] McCammond (J.), Sulway (R.).— Artin groups of Euclidean type. Preprint, arXiv:1312.7770

[37] Michel (J.).— A note on words in braid monoids. J. Algebra 215, no. 1, p. 366-377 (1999). | MR | Zbl

[38] Okonek (C.).— Das K(π,1)-Problem für die affinen Wurzelsysteme vom Typ A n , C n . Math. Z. 168, no. 2, p. 143-148 (1979). | MR | Zbl

[39] Orlik (P.), Terao (H.).— Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin (1992). | MR | Zbl

[40] Ozornova (V.).— Factorability, Discrete Morse Theory and a Reformulation of K(π,1)-conjecture. Ph. D. Thesis, Bonn (2013).

[41] Paris (L.).— Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes. Trans. Amer. Math. Soc. 340, no. 1, p. 149-178 (1993). | MR | Zbl

[42] Paris (L.).— Artin monoids inject in their groups. Comment. Math. Helv. 77, no. 3, p. 609-637 (2002). | MR | Zbl

[43] Salvetti (M.).— Topology of the complement of real hyperplanes in N . Invent. Math. 88, no. 3, p. 603-618 (1987). | MR | Zbl

[44] Salvetti (M.).— On the homotopy theory of complexes associated to metrical-hemisphere complexes. Discrete Math. 113, no. 1-3, p. 155-177 (1993). | MR | Zbl

[45] Salvetti (M.).— The homotopy type of Artin groups. Math. Res. Lett. 1, no. 5, p. 565-577 (1994). | MR | Zbl

[46] Salvetti (M.), Stumbo (F.).— Artin groups associated to infinite Coxeter groups. Discrete Math. 163, no. 1-3, p. 129-138 (1997). | MR | Zbl

[47] Segal (G.).— Configuration-spaces and iterated loop-spaces. Invent. Math. 21, p. 213-221 (1973). | MR | Zbl

[48] Settepanella (S.).— A stability-like theorem for cohomology of pure braid groups of the series A, B and D. Topology Appl. 139, no. 1-3, p. 37-47 (2004). | MR | Zbl

[49] Settepanella (S.).— Cohomology of pure braid groups of exceptional cases. Topology Appl. 156, no. 5, p. 1008-1012 (2009). | MR | Zbl

[50] Spanier (E. H.).— Algebraic topology. Corrected reprint. Springer-Verlag, New York-Berlin (1981). | MR | Zbl

[51] Tits (J.).— Le problème des mots dans les groupes de Coxeter. Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1, p. 175-185, Academic Press, London (1969). | MR | Zbl

[52] Tits (J.).— Groupes et géométries de Coxeter. In Wolf Prize in Mathematics, Vol. 2, S. S. Chern and F. Hirzebruch, eds., World Scientific Publishing, River Edge, NJ, p. 740-754 (2001).

[53] Vaǐnšteǐn (F. V.).— The cohomology of braid groups. Funktsional. Anal. i Prilozhen. 12 (1978), no. 2, p. 72-73. Translation in Functional Anal. Appl. 12, no. 2, p. 135-137 (1978). | MR

[54] Vinberg (E. B.).— Discrete linear groups that are generated by reflections. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35, p. 1072-1112 (1971). | MR | Zbl

Cité par Sources :