Hyperplane arrangements and Milnor fibrations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 2, p. 417-481

There are several topological spaces associated to a complex hyperplane arrangement: the complement and its boundary manifold, as well as the Milnor fiber and its own boundary. All these spaces are related in various ways, primarily by a set of interlocking fibrations. We use cohomology with coefficients in rank 1 local systems on the complement of the arrangement to gain information on the homology of the other three spaces, and on the monodromy operators of the various fibrations.

Étant donné un arrangement d’hyperplans, il y a plusieurs espaces topologiques qu’on peut lui associer : le complémentaire et sa variété bord, ainsi que la fibre de Milnor et son bord. Tous ces espaces sont reliés, en premier lieu par des fibrations. On utilise la cohomologie avec coefficients dans les systèmes locaux de rang 1 sur le complémentaire d’un arrangement d’hyperplans pour étudier l’homologie des trois autres espaces, et les opérateurs de monodromie des fibrations associées.

@article{AFST_2014_6_23_2_417_0,
     author = {Suciu, Alexander I.},
     title = {Hyperplane arrangements and Milnor fibrations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 23},
     number = {2},
     year = {2014},
     pages = {417-481},
     doi = {10.5802/afst.1412},
     zbl = {1300.32028},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2014_6_23_2_417_0}
}
Suciu, Alexander I. Hyperplane arrangements and Milnor fibrations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 2, pp. 417-481. doi : 10.5802/afst.1412. http://www.numdam.org/item/AFST_2014_6_23_2_417_0/

[1] Arapura (D.).— Geometry of cohomology support loci for local systems. I., J. Algebraic Geom. 6, no. 3, p. 563-597 (1997). | MR 1487227 | Zbl 0923.14010

[2] Artal Bartolo (E.), Cogolludo (J.), Matei (D.).— Characteristic varieties of quasi-projective manifolds and orbifolds, Geom. Topol. 17, no. 1, p. 273-309 (2013). | MR 3035328 | Zbl 1266.32035

[3] Brieskorn (E.).— Sur les groupes de tresses (d’après V. I. Arnol’d), Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, p. 21-44, Lecture Notes in Math., vol. 317, Springer, Berlin (1973). | Numdam | MR 422674 | Zbl 0277.55003

[4] Budur (N.), Dimca (A.), Saito (M.).— First Milnor cohomology of hyperplane arrangements, in: Topology of algebraic varieties and singularities, p. 279-292, Contemp. Math., vol. 538, Amer. Math. Soc., Providence, RI (2011). | MR 2777825 | Zbl 1228.32027

[5] Budur (N.), Wang (B.).— Cohomology jump loci of quasi-projective varieties, arXiv: 1211.3766v1

[6] Cohen (D.), Denham (G.), Suciu (A.).— Torsion in Milnor fiber homology, Alg. Geom. Topology 3, p. 511-535 (2003). | MR 1997327 | Zbl 1030.32022

[7] Cohen (D.), Dimca (A.), Orlik (P.).— Nonresonance conditions for arrangements, Annales Institut Fourier (Grenoble) 53, no. 6, p. 1883-1896 (2003). | Numdam | MR 2038782 | Zbl 1054.32016

[8] Cohen (D.), Suciu (A.).— On Milnor fibrations of arrangements, J. London Math. Soc. (2) 51, no. 1, p. 105-119 (1995). | MR 1310725 | Zbl 0814.32007

[9] Cohen (D.), Suciu (A.).— The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helvetici 72, no. 2, p. 285-315 (1997). | MR 1470093 | Zbl 0959.52018

[10] Cohen (D.), Suciu (A.).— Characteristic varieties of arrangements, Math. Proc. Cambridge Phil. Soc. 127, no. 1, p. 33-53 (1999). | MR 1692519 | Zbl 0963.32018

[11] Cohen (D.), Suciu (A.).— Boundary manifolds of projective hypersurfaces, Advances in Math. 206, no. 2, p. 538-566 (2006). | MR 2263714 | Zbl 1110.14036

[12] Cohen (D.), Suciu (A.).— The boundary manifold of a complex line arrangement, Geometry & Topology Monographs 13, p. 105-146 (2008). | MR 2508203 | Zbl 1137.32013

[13] Denham (G.).— Homological aspects of hyperplane arrangements, in: Arrangements, local systems and singularities, 39-58, Progress in Math., vol. 283, Birkhäuser, Basel (2010). | MR 3025859

[14] Denham (G.), Suciu (A.).— Multinets, parallel connections, and Milnor fibrations of arrangements, Proc. London Math. Soc. (to appear), available at arXiv: 1209.3414v2

[15] Dimca (A.).— Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York (1992). | MR 1194180 | Zbl 0753.57001

[16] Dimca (A.).— Sheaves in topology, Universitext, Springer-Verlag, Berlin (2004). | MR 2050072 | Zbl 1043.14003

[17] Dimca (A.).— Characteristic varieties and constructible sheaves, Rend. Lincei Mat. Appl. 18, no. 4, p. 365-389 (2007). | MR 2349994 | Zbl 1139.14009

[18] Dimca (A.).— Monodromy of triple point line arrangements, in: Singularities in Geometry and Topology 2011, Adv. Std. Pure Math. (to appear), available at arXiv: 1107.2214v2 | MR 815487

[19] Dimca (A.), Papadima (S.).— Finite Galois covers, cohomology jump loci, formality properties, and multinets, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10, no. 2, p. 253-268 (2011). | MR 2856148 | Zbl 1239.32023

[20] Dimca (A.), Papadima (S.), Suciu (A.).— Alexander polynomials: Essential variables and multiplicities, Int. Math. Res. Notices 2008, no. 3, Art. ID rnm119, 36 p. | MR 2416998 | Zbl 1156.32018

[21] Dimca (A.), Papadima (S.), Suciu (A.).— Topology and geometry of cohomology jump loci, Duke Math. Journal 148, no. 3, p. 405-457 (2009). | MR 2527322 | Zbl 1222.14035

[22] Durfee (A.).— Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276, no. 2, p. 517-530 (1983). | MR 688959 | Zbl 0529.14013

[23] Falk (M.).— Arrangements and cohomology, Ann. Combin. 1, no. 2, p. 135-157 (1997). | MR 1629681 | Zbl 0941.52022

[24] Falk (M.).— Resonance varieties over fields of positive characteristic, Int. Math. Research Notices 2007, no. 3, article ID rnm009, 25 pages (2007). | MR 2337033 | Zbl 1180.14054

[25] Falk (M.), Yuzvinsky (S.).— Multinets, resonance varieties, and pencils of plane curves, Compositio Math. 143, no. 4, p. 1069-1088 (2007). | MR 2339840 | Zbl 1122.52009

[26] Félix (Y.), Oprea (J.), Tanré (D.).— Algebraic models in geometry, Oxford Grad. Texts in Math., vol. 17, Oxford Univ. Press, Oxford (2008). | MR 2403898 | Zbl 1149.53002

[27] Hatcher (A.).— Algebraic topology, Cambridge University Press, Cambridge (2002). | MR 1867354 | Zbl 1044.55001

[28] Hironaka (E.).— Abelian coverings of the complex projective plane branched along configurations of real lines, Memoirs A.M.S., vol. 502, Amer. Math. Soc., Providence, RI (1993). | MR 1164128 | Zbl 0788.14054

[29] Hironaka (E.).— Alexander stratifications of character varieties, Annales de l’Institut Fourier (Grenoble) 47, no. 2, p. 555-583 (1997). | Numdam | MR 1450425 | Zbl 0870.57003

[30] Hironaka (E.).— Boundary manifolds of line arrangements, Math. Annalen 319, no. 1, p. 17-32 (2001). | MR 1812817 | Zbl 0995.32016

[31] Hirzebruch (F.).— The topology of normal singularities of an algebraic surface (after D. Mumford), Séminaire Bourbaki, Vol. 8, Exp. No. 250, p. 129-137, Soc. Math. France, Paris (1995). | Numdam | MR 1611536 | Zbl 0126.16903

[32] Jiang (T.), Yau (S.S.-T.).— Topological invariance of intersection lattices of arrangements in ℂℙ 2 , Bull. Amer. Math. Soc. 29, no. 1, p. 88-93 (1993). | MR 1197426 | Zbl 0847.52011

[33] Jiang (T.), Yau (S.S.-T.).— Intersection lattices and topological structures of complements of arrangements in ℂℙ 2 , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26, no. 2, p. 357-381 (1998). | Numdam | MR 1631597 | Zbl 0973.32015

[34] Libgober (A.).— On the homology of finite abelian coverings, Topology Appl. 43, no. 2, p. 157-166. (1992) | MR 1152316 | Zbl 0770.14004

[35] Libgober (A.).— Characteristic varieties of algebraic curves, in: Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), p. 215-254, NATO Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer Acad. Publ., Dordrecht (2001). | MR 1866902 | Zbl 1045.14016

[36] Libgober (A.).— First order deformations for rank one local systems with a non-vanishing cohomology, Topology Appl. 118, no. 1-2, p. 159-168 (2002). | MR 1877722 | Zbl 1010.52016

[37] Libgober (A.).— Eigenvalues for the monodromy of the Milnor fibers of arrangements, Trends in singularities, p. 141-150, Trends Math., Birkhäuser, Basel (2002). | MR 1900784 | Zbl 1036.32019

[38] Libgober (A.).— Non vanishing loci of Hodge numbers of local systems, Manuscripta Math. 128, no. 1, p. 1-31 (2009). | MR 2470184 | Zbl 1160.14004

[39] Libgober (A.).— On combinatorial invariance of the cohomology of Milnor fiber of arrangements and Catalan equation over function field, in: Arrangements of hyperplanes (Sapporo 2009), p. 175-187, Adv. Stud. Pure Math., vol. 62, Math. Soc. Japan, Tokyo (2012). | MR 2933797 | Zbl 1260.14035

[40] Libgober (A.), Yuzvinsky (S.).— Cohomology of Orlik-Solomon algebras and local systems, Compositio Math. 21 (2000), no. 3, 337-361. | MR 1761630 | Zbl 0952.52020

[41] Măcinic (A.), Papadima (S.).— On the monodromy action on Milnor fibers of graphic arrangements, Topology Appl. 156, no. 4, p. 761-774 (2009). | MR 2492960 | Zbl 1170.32009

[42] Matei (D.).— Massey products of complex hypersurface complements, In: Singularity Theory and its Applications, p. 205-219, Adv. Studies in Pure Math., vol. 43, Math. Soc. Japan, Tokyo (2007). | MR 2325139 | Zbl 1135.32026

[43] Matei (D.), Suciu (A.).— Cohomology rings and nilpotent quotients of real and complex arrangements, in: Arrangements-Tokyo 1998, p. 185-215, Adv. Stud. Pure Math., vol. 27, Math. Soc. Japan, Tokyo (2000). | MR 1796900 | Zbl 0974.32020

[44] Matei (D.), Suciu (A.).— Hall invariants, homology of subgroups, and characteristic varieties, Internat. Math. Res. Notices 2002, no. 9, p. 465-503 (2002). | MR 1884468 | Zbl 1061.20040

[45] Milnor (J.).— Singular points of complex hypersurfaces, Annals of Math. Studies, vol. 61, Princeton Univ. Press, Princeton, NJ (1968). | MR 239612 | Zbl 0184.48405

[46] Némethi (A.), Szilárd (A.).— Milnor fiber boundary of a non-isolated surface singularity, Lecture Notes in Math, vol. 2037, Springer-Verlag, Berlin Heidelberg (2012). | MR 3024944 | Zbl 1239.32024

[47] Orlik (P.), Randell (R.).— The Milnor fiber of a generic arrangement, Arkiv für Mat. 31, no. 1, p. 71-81 (1993). | MR 1230266 | Zbl 0807.32029

[48] Orlik (P.), Solomon (L.).— Combinatorics and topology of complements of hyperplanes, Invent. Math. 56, no. 2, p. 167-189 (1980). | MR 558866 | Zbl 0432.14016

[49] Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren Math. Wiss., vol. 300, Springer-Verlag, Berlin (1992). | MR 1217488 | Zbl 0757.55001

[50] Oxley (J.).— Matroid theory, Oxford Sci. Publ, Oxford University Press, New York (1992). | MR 1207587 | Zbl 1115.05001

[51] Papadima (S.), Suciu (A.).— Chen Lie algebras, Intern. Math. Res. Notices 2004, no. 21, p. 1057-1086 (2004). | MR 2037049 | Zbl 1076.17007

[52] Papadima (S.), Suciu (A.).— Algebraic invariants for right-angled Artin groups, Math. Ann. 334, no. 3, p. 533-555 (2006). | MR 2207874 | Zbl 1165.20032

[53] Papadima (S.), Suciu (A.).— Geometric and algebraic aspects of 1-formality, Bull. Math. Soc. Sci. Math. Roumanie 52, no. 3, p. 355-375 (2009). | MR 2554494 | Zbl 1199.55010

[54] Papadima (S.), Suciu (A.).— Bieri-Neumann-Strebel-Renz invariants and homology jumping loci, Proc. London Math. Soc. 100, no. 3, p. 795-834 (2010). | MR 2640291 | Zbl 1273.55003

[55] Pereira (J.), Yuzvinsky (S.).— Completely reducible hypersurfaces in a pencil, Adv. Math. 219, no. 2, p. 672-688 (2008). | MR 2435653 | Zbl 1146.14005

[56] Rybnikov (G.).— On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl. 45, no. 2, p. 137-148 (2011). | MR 2848779 | Zbl 1271.14085

[57] Sakuma (M.).— Homology of abelian coverings of links and spatial graphs, Canad. J. Math. 47, no. 1, p. 201-224 (1995). | MR 1319696 | Zbl 0839.57001

[58] Suciu (A.).— Fundamental groups of line arrangements: Enumerative aspects, in: Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), p. 43-79, Contemp. Math., vol 276, Amer. Math. Soc., Providence, RI (2001). | MR 1837109 | Zbl 0998.14012

[59] Suciu (A.).— Translated tori in the characteristic varieties of complex hyperplane arrangements, Topology Appl. 118, no. 1-2, p. 209-223 (2002). | MR 1877726 | Zbl 1021.32009

[60] Suciu (A.).— Fundamental groups, Alexander invariants, and cohomology jumping loci, in: Topology of algebraic varieties and singularities, p. 179-223, Contemp. Math., vol. 538, Amer. Math. Soc., Providence, RI (2011). | MR 2777821 | Zbl 1214.14017

[61] Suciu (A.).— Geometric and homological finiteness in free abelian covers, in: Configuration Spaces: Geometry, Combinatorics and Topology (Centro De Giorgi, 2010), p. 461-501, Publications of the Scuola Normale Superiore, vol. 14, Edizioni della Normale, Pisa (2012). | Zbl 1273.14109

[62] Suciu (A.).— Characteristic varieties and Betti numbers of free abelian covers, Intern. Math. Res. Notices (2014), no. 4, p. 1063-1124 (2014).

[63] Suciu (A.), Yang (Y.), Zhao (G.).— Homological finiteness of abelian covers, Ann. Sc. Norm. Super. Pisa Cl. Sci. (to appear), available at arXiv: 1204.4873v2.

[64] Westlund (E.).— The boundary manifold of an arrangement, Ph.D. thesis, University of Wisconsin, Madison, WI (1997). | MR 2697010

[65] Yoshinaga (M.).— Milnor fibers of real line arrangements, J. Singul. 7, p. 242-259 (2013). | MR 3090727

[66] Yuzvinsky (S.).— A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137, no. 5, p. 1641-1648 (2009). | MR 2470822 | Zbl 1173.14021

[67] Yuzvinsky (S.).— Resonance varieties of arrangement complements, in: Arrangements of Hyperplanes (Sapporo 2009), p. 553-570, Advanced Studies Pure Math., vol. 62, Kinokuniya, Tokyo (2012). | MR 2933810 | Zbl 1270.52030

[68] Zuber (H.).— Non-formality of Milnor fibers of line arrangements, Bull. London Math. Soc. 42, no. 5, p. 905-911 (2010). | MR 2728693 | Zbl 1202.32022