Knot complements, hidden symmetries and reflection orbifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 5, pp. 1179-1201.

Dans cet article, nous étudions la conjecture de Neumann et Reid selon laquelle les seuls nœuds hyperboliques dans la sphère S 3 admettant des symétries cachées sont le nœud figure-huit et les deux nœuds dodécaédriques. Les nœuds dont les compléments revêtent des orbifold de réflexions hyperboliques admettent des symétries cachées et nous vérifions la conjecture de Neumann et Reid pour ces nœuds lorsque l’orbifold de réflexions est petit. Nous montrons aussi qu’un orbifold de réflexions revêtu par le complément d’un nœud “AP” est nécessairement petit. Ainsi, lorsque K est un nœud “AP”, le complément de K revêt un orbifold de réflexions si et seulement si K est le nœud figure-huit ou l’un des deux nœuds dodécaédriques.

In this article we examine the conjecture of Neumann and Reid that the only hyperbolic knots in the 3-sphere which admit hidden symmetries are the figure-eight knot and the two dodecahedral knots. Knots whose complements cover hyperbolic reflection orbifolds admit hidden symmetries, and we verify the Neumann-Reid conjecture for knots which cover small hyperbolic reflection orbifolds. We also show that a reflection orbifold covered by the complement of an AP knot is necessarily small. Thus when K is an AP knot, the complement of K covers a reflection orbifold exactly when K is either the figure-eight knot or one of the dodecahedral knots.

DOI : 10.5802/afst.1480
Boileau, Michel 1 ; Boyer, Steven 2 ; Cebanu, Radu 3 ; Walsh, Genevieve S. 4

1 Institut de Mathématiques de Marseille I2M, UMR 7373, Université d’Aix-Marseille, Technopôle Château-Gombert, 39, rue F. Joliot Curie, 13453 Marseille Cedex 13, France.
2 Dépt. de math., UQAM, P. O. Box 8888, Centre-ville, Montréal, Qc, H3C 3P8, Canada.
3 Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, USA.
4 Dept. of Math., Tufts University, Medford, MA 02155, USA.
@article{AFST_2015_6_24_5_1179_0,
     author = {Boileau, Michel and Boyer, Steven and Cebanu, Radu and Walsh, Genevieve S.},
     title = {Knot complements, hidden symmetries and reflection orbifolds},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1179--1201},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 24},
     number = {5},
     year = {2015},
     doi = {10.5802/afst.1480},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1480/}
}
TY  - JOUR
AU  - Boileau, Michel
AU  - Boyer, Steven
AU  - Cebanu, Radu
AU  - Walsh, Genevieve S.
TI  - Knot complements, hidden symmetries and reflection orbifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 1179
EP  - 1201
VL  - 24
IS  - 5
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1480/
DO  - 10.5802/afst.1480
LA  - en
ID  - AFST_2015_6_24_5_1179_0
ER  - 
%0 Journal Article
%A Boileau, Michel
%A Boyer, Steven
%A Cebanu, Radu
%A Walsh, Genevieve S.
%T Knot complements, hidden symmetries and reflection orbifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 1179-1201
%V 24
%N 5
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://archive.numdam.org/articles/10.5802/afst.1480/
%R 10.5802/afst.1480
%G en
%F AFST_2015_6_24_5_1179_0
Boileau, Michel; Boyer, Steven; Cebanu, Radu; Walsh, Genevieve S. Knot complements, hidden symmetries and reflection orbifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 5, pp. 1179-1201. doi : 10.5802/afst.1480. http://archive.numdam.org/articles/10.5802/afst.1480/

[1] Adams (C.).— Toroidally alternating knots and links, Topology 33, p. 353-369 (1994). | MR | Zbl

[2] Aitchison (I. R.) and Rubinstein (J. H.).— Combinatorial cubings, cusps, and the dodecahedral knots, in Topology ’90, Ohio State Univ. Math. Res. Inst. Publ. 1, p. 17-26, de Gruyter (1992). | MR | Zbl

[3] Aitchison (I. R.) and Rubinstein (J. H.).— Geodesic Surfaces in Knot Complements, Exp. Math. 6, p. 137-150 (1997). | EuDML | MR | Zbl

[4] Banks (J.).— The complement of a dodecahedral knot contains an essential closed surface, http://thales.math.uqam.ca/~banksj/, preprint 2012.

[5] Boileau (M.), Boyer (S.), Cebanu (R.), and Walsh (G. S.).— Knot commensurability and the Berge conjecture, Geom. & Top. 16, p. 625-664 (2012). | MR | Zbl

[6] Boileau (M.), Maillot (S.) and Porti (J.).— Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses, 15, Société Mathématique de France, Paris (2003). | MR | Zbl

[7] Burton (B.), Coward (A.), and Tillmann (S.).— Computing closed essential surfaces in knot complements, SoCG ’13: Proceedings of the Twenty-Ninth Annual Symposium on Computational Geometry, ACM, p. 405-414 (2013). | MR | Zbl

[8] Dolgachev (I.).— Reflection groups in algebraic geometry, Bull. Amer. Math. Soc. 45, p. 1-60 (2008). | Zbl

[9] González-Acuña (F.) and Whitten (W. C.).— Imbeddings of three-manifold groups, Mem. Amer. Math. Soc. 474 (1992). | MR | Zbl

[10] Goodman (O.), Heard (D.), and Hodgson (C.).— Commensurators of cusped hyperbolic manifolds, Experiment. Math. 17, p. 283-306 (2008). | MR

[11] Hoffman (N.).— Small knot complements, exceptional surgeries, and hidden symmetries, Alg. & Geom. Top. 14, p. 3227-3258 (2014).

[12] Hoffman (N.).— On knot complements that decompose into regular ideal dodecahedra, to appear in Geom. Dedicata. | Zbl

[13] Jaco (Wm.) and Shalen (P. B.).— Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21, no. 220 (1979). | Zbl

[14] Maclachlan (C.) and Reid (A. W.).— The Arithmetic of Hyperbolic 3-manifolds, Graduate Texts in Mathematics 219, Springer-Verlag (2003). | MR | Zbl

[15] Margulis (G.).— Discrete Subgroups of Semi-simple Lie Groups, Ergeb. der Math. 17 Springer-Verlag (1989). | Zbl

[16] Menasco (Wm.).— Closed incompressible surfaces in alternating knot and link complements, Top. 23, p. 7-44 (1984). | Zbl

[17] Neumann (W. D.) and Reid (A. W.).— Arithmetic of hyperbolic manifolds, in Topology ’90, Ohio State Univ. Math. Res. Inst. Publ. 1, p. 273-310, de Gruyter (1992). | MR | Zbl

[18] Neumann (W. D.) and Reid (A. W.).— Notes on Adams’ small volume orbifolds, in Topology ’90, Ohio State Univ. Math. Res. Inst. Publ. 1, p. 273-310, de Gruyter (1992). | MR | Zbl

[19] Oertel (U.).— Closed incompressible surfaces in complements of star links, Pac. J. Math, 111, p. 209-230 (1984). | MR | Zbl

[20] Reid (A. W.).— Arithmeticity of knot complements, J. London Math. Soc. 43, p. 171-184 (1991). | MR | Zbl

[21] Reid (A. W.) and Walsh (G. S.).— Commensurability classes of two-bridge knot complements, Alg. & Geom. Top. 8, p. 1031-1057 (2008). | MR | Zbl

[22] Schwartz (R; E.).— The quasi-isometry classification of rank one lattices, Publ. I.H.E.S. 82, p. 133-168 (1995). | Numdam | MR | Zbl

[23] Thurston (Wm.).— The Geometry and Topology of 3-manifolds, Princeton University lecture notes, 1980. Electronic version 1.1: http://www.msri.org/publications/books/gt3m/.

[24] Walsh (G. S.).— Orbifolds and commensurability, In “Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory" Contemporary Mathematics 541, p. 221-231 (2011). | MR | Zbl

[25] Wielenberg (N.).— The structure of certain subgroups of the Picard group, Math. Proc. Cam. Phil. Soc. 84, p. 427-436 (1978). | MR | Zbl

Cité par Sources :