Ce texte présente plusieurs aspects de la théorie de l’équisingularité des espaces analytiques complexes telle qu’elle est définie par les conditions de Whitney. Le but est de décrire des points de vue géométrique, topologique et algébrique une partition canonique localement finie d’un espace analytique complexe réduit en strates non singulières telles que la géométrie locale de soit constante le long de chaque strate. Les variétés polaires locales apparaissent dans le titre parce qu’elles jouent un rôle central dans l’unification des points de vue. Le point de vue géométrique conduit à l’étude des directions limites en un point donné de des hyperplans de tangents à en des points non singuliers. Ceci amène à réaliser que les conditions de Whitney, qui servent à définir la stratification, sont en fait de nature lagrangienne. Les variétés polaires locales sont utilisées pour analyser la structure de l’ensemble des positions limites d’hyperplans tangents. Cette structure aide à comprendre comment une singularité diffère de son cône tangent, supposé réduit. Les multiplicités des variétés polaires locales sont reliées à des invariants topologiques locaux, des caractéristiques d’Euler–Poincaré évanescentes, par une formule qui se révèle, dans le cas particulier où la singularité est le sommet du cône sur une variété projective réduite, donner une formule du type Plücker pour le calcul du degré de la variété duale d’une variété projective.
This text presents several aspects of the theory of equisingularity of complex analytic spaces from the standpoint of Whitney conditions. The goal is to describe from the geometrical, topological, and algebraic viewpoints a canonical locally finite partition of a reduced complex analytic space into nonsingular strata with the property that the local geometry of is constant on each stratum. Local polar varieties appear in the title because they play a central role in the unification of viewpoints. The geometrical viewpoint leads to the study of spaces of limit directions at a given point of of hyperplanes of tangent to at nonsingular points, which in turn leads to the realization that the Whitney conditions, which are used to define the stratification, are in fact of a Lagrangian nature. The local polar varieties are used to analyze the structure of the set of limit directions of tangent hyperplanes. This structure helps in particular to understand how a singularity differs from its tangent cone, assumed to be reduced. The multiplicities of local polar varieties are related to local topological invariants, local vanishing Euler–Poincaré characteristics, by a formula which turns out to contain, in the special case where the singularity is the vertex of the cone over a reduced projective variety, a Plücker-type formula for the degree of the dual of a projective variety.
Accepté le :
Publié le :
DOI : 10.5802/afst.1582
@article{AFST_2018_6_27_4_679_0, author = {Flores, Arturo Giles and Teissier, Bernard}, title = {Local polar varieties in the geometric study of singularities}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {679--775}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {4}, year = {2018}, doi = {10.5802/afst.1582}, zbl = {1409.14002}, mrnumber = {3884609}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1582/} }
TY - JOUR AU - Flores, Arturo Giles AU - Teissier, Bernard TI - Local polar varieties in the geometric study of singularities JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 679 EP - 775 VL - 27 IS - 4 PB - Université Paul Sabatier, Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1582/ DO - 10.5802/afst.1582 LA - en ID - AFST_2018_6_27_4_679_0 ER -
%0 Journal Article %A Flores, Arturo Giles %A Teissier, Bernard %T Local polar varieties in the geometric study of singularities %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 679-775 %V 27 %N 4 %I Université Paul Sabatier, Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1582/ %R 10.5802/afst.1582 %G en %F AFST_2018_6_27_4_679_0
Flores, Arturo Giles; Teissier, Bernard. Local polar varieties in the geometric study of singularities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 4, pp. 679-775. doi : 10.5802/afst.1582. http://archive.numdam.org/articles/10.5802/afst.1582/
[1] Equisingular generic discriminants and Whitney conditions, Ann. Fac. Sci. Toulouse, Math., Volume 17 (2008) no. 4, pp. 661-671 | DOI | Numdam | MR | Zbl
[2] Limites de espacios tangentes en superficies, Monografías del Seminario Iberoamericano de Matemáticas, 1, Instituto Interuniversitario de Estudios de Iberoamerica y Portugal, 2002, 128 pages | Zbl
[3] On the singular schemes of hypersurfaces, Duke Math. J., Volume 80 (1995) no. 2, pp. 325-351 | DOI | MR | Zbl
[4] Euler characteristics of general linear sections and polynomial Chern classes, Rend. Circ. Mat. Palermo, Volume 62 (2013) no. 1, pp. 3-26 | DOI | MR | Zbl
[5] Projective duality and a Chern-Mather involution, Trans. Am. Math. Soc., Volume 370 (2018) no. 3, pp. 1803-1822 | DOI | MR | Zbl
[6] Interpolation of characteristic classes of singular hypersurfaces, Adv. Math., Volume 180 (2003) no. 2, pp. 692-704 | DOI | MR | Zbl
[7] Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969 | Zbl
[8] Polar varieties, real equation solving and data structures, J. Complexity, Volume 13 (1997) no. 1, pp. 5-27 | DOI | MR | Zbl
[9] Polar varieties and efficient real elimination, Math. Z., Volume 238 (2001) no. 1, pp. 115-144 | DOI | MR | Zbl
[10] Generalized polar varieties: geometry and algorithms, J. Complexity, Volume 21 (2005) no. 4, pp. 377-412 | DOI | MR | Zbl
[11] Lipschitz regular complex algebraic sets are smooth, Proc. Am. Math. Soc., Volume 144 (2016) no. 3, pp. 983-987 | DOI | MR | Zbl
[12] Fine polar invariants of minimal surface singularities, J. Singul., Volume 14 (2016), pp. 91-112 | MR
[13] Elements de Mathématique. Algèbre Commutative, Chap. I-VII, Masson, 1983
[14] Elements de Mathématique. Algèbre Commutative, Chap. VIII-IX, Masson, 1983 | Zbl
[15] Milnor classes via polar varieties, Singularities in algebraic and analytic geometry (Contemporary Mathematics), Volume 266, American Mathematical Society, 2000, pp. 181-187 | DOI | MR | Zbl
[16] The Schwartz classes of complex analytic singular varieties, Singularity theory, World Scientific, 2007, pp. 3-32 | DOI | MR | Zbl
[17] Equisingularité générique des familles de surfaces à singularité isolée, Bull. Soc. Math. Fr., Volume 108 (1980), pp. 259-281 | DOI | Numdam | Zbl
[18] La trivialité topologique n’implique pas les conditions de Whitney, C. R. Acad. Sci., Paris, Sér. A, Volume 280 (1975) no. 6, p. A365-A367 | Zbl
[19] Les conditions de Whiney impliquent constant, Ann. Inst. Fourier, Volume 26 (1976) no. 2, pp. 153-163 | DOI | Zbl
[20] Whitney (b) regularity is weaker than Kuo’s ratio test for real algebraic stratifications, Math. Scand., Volume 45 (1979), pp. 27-34 | DOI | MR | Zbl
[21] The complexity of computing the Hilbert polynomial of smooth equidimensional complex projective varieties, Found. Comput. Math., Volume 7 (2007) no. 1, pp. 51-86 | MR | Zbl
[22] Focal loci of algebraic varieties. I, Commun. Algebra, Volume 28 (2000) no. 12, pp. 6017-6057 | DOI | MR | Zbl
[23] Sur les sections transversales d’un ensemble stratifié, C. R. Acad. Sci., Paris, Sér. A, Volume 275 (1972), pp. 915-916 | MR | Zbl
[24] Multiplicity of complex analytic sets and bi-Lipschitz maps, Real analytic and algebraic singularities (Pitman Research Notes in Mathematics Series), Volume 381, Longman, 1998, pp. 182-188 | MR | Zbl
[25] Equisingularité réelle, nombres de Lelong, et images polaires, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 6, pp. 757-788 | DOI | Numdam | MR | Zbl
[26] Équisingularité réelle, II. Invariants locaux et conditions de régularité, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008) no. 2, pp. 221-269 | DOI | Numdam | Zbl
[27] Sur la topologie des courbes polaires de certains feuilletages singuliers, Ann. Inst. Fourier, Volume 53 (2003) no. 3, pp. 787-814 | DOI | Numdam | MR | Zbl
[28] The Euclidean Distance Degree of an Algebraic Variety, Found. Comput. Math., Volume 16 (2016) no. 1, pp. 99-149 | DOI | MR | Zbl
[29] The ramification divisor for branched coverings of , Math. Ann., Volume 261 (1982), pp. 483-485 | MR | Zbl
[30] Commutative Algebra with a view toward Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer, 1999, xvi+785 pages | Zbl
[31] A Plücker formula for singular projective varieties, Commun. Algebra, Volume 25 (1997) no. 9, pp. 2897-2901 | DOI | MR | Zbl
[32] Multiplicity of analytic hypersurface singularities under bi-Lipschitz homeomorphisms, J. Topol., Volume 9 (2016) no. 3, pp. 927-933 | DOI | MR | Zbl
[33] Complex Analytic Geometry, Lecture Notes in Mathematics, 538, Springer, 1976, vii+201 pages | MR | Zbl
[34] Specialization to the tangent cone and Whitney equisingularity, Bull. Soc. Math. Fr., Volume 141 (2013) no. 2, pp. 299-342 | DOI | Numdam | MR | Zbl
[35] Auréoles and integral closure of modules, Stratifications, singularities and differential equations. II: Stratifications and topology of singular spaces (Travaux en Cours), Volume 55, Hermann, 1990, pp. 55-62 | MR | Zbl
[36] Integral closure of modules and Whitney equisingularity, Invent. Math., Volume 107 (1992) no. 2, pp. 301-322 | DOI | MR | Zbl
[37] Equisingularity of Plane Sections, Condition, and the Integral Closure of Modules, Real and complex singularities (Pitman Research Notes in Mathematics Series), Volume 333, Longman, 1995, pp. 95-111 | MR | Zbl
[38] Multiplicities and equisingularity of ICIS germs, Invent. Math., Volume 123 (1996) no. 2, pp. 209-220 | DOI | MR | Zbl
[39] Polar methods, invariants of pairs of modules and equisingularity, Real and complex singularities (Contemporary Mathematics), Volume 354, American Mathematical Society, 2002, pp. 113-136 | DOI | Zbl
[40] Generalized Buchsbaum-Rim Multiplicities and a Theorem of Rees, Commun. Algebra, Volume 31 (2003) no. 8, pp. 3811-3828 | DOI | Zbl
[41] Bi-Lipschitz equivalence, integral closure and invariants, Real and complex singularities (London Mathematical Society Lecture Note Series), Volume 380, Cambridge University Press, 2010, pp. 125-137 | DOI | MR | Zbl
[42] Segre Numbers and Hypersurface Singularities, J. Algebr. Geom., Volume 8 (1999) no. 4, pp. 695-736 | MR | Zbl
[43] Specialization of integral dependence for modules, Invent. Math., Volume 137 (1999) no. 3, pp. 541-574 | DOI | MR | Zbl
[44] Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 14, Springer, 1988, xiv+272 pages | MR | Zbl
[45] Complex differential and integral geometry and curvature integrals associated to singularities of complex analytic varieties, Duke Math. J., Volume 45 (1978) no. 3, pp. 427-512 | MR | Zbl
[46] Notes on the duality of projective varieties, Geometry today (Progress in Mathematics), Volume 60, Birkhäuser, 1984, pp. 143-183 | Zbl
[47] Fibre dimension of the Nash transformation (2014) (https://arxiv.org/abs/1410.8449v1)
[48] Limites de normales, conditions de Whitney et éclatements d’Hironaka, Singularities (Proceedings of Symposia in Pure Mathematics), Volume 40, American Mathematical Society, 1981, pp. 575-584 | Zbl
[49] Sur la condition de Thom stricte pour un morphisme analytique complexe, Ann. Sci. Éc. Norm. Supér., Volume 17 (1984), pp. 217-268 | Numdam | MR | Zbl
[50] Equimultiplicity and Blowing up, Springer, 1988, xvii+629 pages | Zbl
[51] Normal cones in analytic Whitney Stratifications, Publ. Math., Inst. Hautes Étud. Sci., Volume 36 (1970), pp. 127-138 | DOI | Zbl
[52] Topological methods in Algebraic Geometry, Classics in Mathematics, Springer, 1978, ix+234 pages | Zbl
[53] On the dual of a smooth variety, Algebraic geometry (Lecture Notes in Mathematics), Volume 732, Springer, 1978, pp. 144-156 | DOI | MR | Zbl
[54] On caustics by reflection of algebraic surfaces, Adv. Geom., Volume 16 (2016) no. 4, pp. 437-464 | MR | Zbl
[55] Index theorem for a maximally overdetermined system of linear differential equations, Proc. Japan Acad., Volume 49 (1973), pp. 803-804 | DOI | MR
[56] Systems of microdifferential equations, Progress in Mathematics, 34, Birkhäuser, 1983, xv+159 pages | MR | Zbl
[57] Holomorphic Functions of Several Variables, De Gruyter Studies in Mathematics, 3, Walter de Gruyter, 1983, xv+349 pages | MR | Zbl
[58] The transversality of a general translate, Compos. Math., Volume 28 (1974), pp. 287-297 | Numdam | MR | Zbl
[59] The enumerative theory of Singularities, Real and complex singularities, Sijthoff & Noordhoff International Publishers, 1976, pp. 297-396 | Zbl
[60] About the conormal scheme, Complete intersections (Lecture Notes in Mathematics), Volume 1092, Springer, 1984, pp. 161-197 | DOI | MR | Zbl
[61] Tangency and duality, Proceedings of the 1984 Vancouver conference in algebraic geometry (CMS Conference Proceedings), Volume 6, American Mathematical Society, 1984, pp. 163-225 | MR | Zbl
[62] A generalized Teissier-Plücker formula, Classification of algebraic varieties (Contemporary Mathematics), Volume 162, American Mathematical Society, 1992, pp. 249-260 | DOI | MR | Zbl
[63] Courbure et singularités complexes, Comment. Math. Helv., Volume 54 (1979), pp. 6-16 | DOI | Zbl
[64] Degré de la variété duale d’une hypersurface à singularités isolées, Bull. Soc. Math. Fr., Volume 104 (1976) no. 1, pp. 51-63 | DOI | Zbl
[65] Transformations canoniques et spécialisation pour les -modules filtrés, Systèmes différentiels et singularités (Astérisque), Volume 130, Société Mathématique de France, 1985, pp. 56-129 | Numdam | Zbl
[66] Sur un critère d’équisingularité, C. R. Acad. Sci., Paris, Sér. A, Volume 272 (1971), pp. 138-140 | Zbl
[67] Calcul du nombre de Milnor d’une singularité isolée d’intersection complète, Funkts. Anal. Prilozh., Volume 8 (1974) no. 2, pp. 45-49 | Zbl
[68] The invariance of Milnor number implies the invariance of the topological type, Am. J. Math., Volume 98 (1976), pp. 67-78 | DOI | MR | Zbl
[69] Sur la géométrie des surfaces complexes, I. Tangentes exceptionelles, Am. J. Math., Volume 101 (1979) no. 2, pp. 420-452 | DOI | Zbl
[70] Variétés polaires locales et classes de Chern des variétés singulières, Ann. Math., Volume 114 (1981), pp. 457-491 erratum in Ann. Math. 115 (1982), p. 668 | DOI | Zbl
[71] Cycles évanescents, sections planes, et conditions de Whitney II, Singularities (Proceedings of Symposia in Pure Mathematics), Volume 40, American Mathematical Society, 1983, pp. 65-103 | DOI | Zbl
[72] Limites d’espaces tangents en géométrie analytique, Comment. Math. Helv., Volume 63 (1988) no. 4, pp. 540-578 | DOI | Zbl
[73] Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse, Math., Volume 17 (2008) no. 4, pp. 781-859 | DOI | Numdam | Zbl
[74] Equisingularity and simultaneous resolution of singularities, Resolution of Singularities: a research textbook in tribute to Oscar Zariski (Progress in Mathematics), Volume 181, Birkhäuser, 2000, pp. 485-505 | DOI | MR | Zbl
[75] Notes on topological stability, Mimeographed notes, Harvard, 1970 revised version published in Bull. Am. Math. Soc. 49 (2012), no. 4, p. 475–506 | Zbl
[76] Stratifications and Mappings, Dynamical Systems, Academic Press, 1973, pp. 195-232 | Zbl
[77] Generalized Plücker-Teissier-Kleiman formulas for varieties with arbitrary dual defect, Real and complex singularities, World Scientific, 2007, pp. 248-270 | DOI | Zbl
[78] Commutative Ring Theory, Cambridge University Press, 2000 | Zbl
[79] Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press, 1968, 122 pages | MR | Zbl
[80] Complexity of the Computation of the Canonical Whitney Stratification of an Algebraic Set in , Applied algebra, algebraic algorithms and error-correcting codes (Lecture Notes in Computer Science), Volume 539, Springer (1991), pp. 281-291 | DOI | MR | Zbl
[81] On the Chern Classes and the Euler Characteristic for nonsingular Complete Intersections, Proc. Am. Math. Soc., Volume 78 (1980) no. 1, pp. 143-148 | MR | Zbl
[82] Lipschitz geometry of complex surfaces: analytic invariants (2012) (https://arxiv.org/abs/1211.4897)
[83] The vanishing Euler characteristic of an isolated determinantal singularity, Isr. J. Math., Volume 197 (2013), pp. 475-495 erratum in Isr. J. Math., 224 (2018), p. 505-512 | DOI | MR | Zbl
[84] Computing limits of tangent spaces: singularities, computation and pedagogy, Singularity theory, World Scientific, 1991, pp. 549-573 | Zbl
[85] Arc-wise analytic stratification, Whitney fibering conjecture and Zariski equisingularity, Adv. Math., Volume 309 (2017), pp. 254-305 | DOI | MR | Zbl
[86] Singularités des systèmes différentiels de Gauss-Manin, Progress in Mathematics, 2, Birkhäuser, 1979, x+339 pages | MR | Zbl
[87] Polar classes of singular varieties, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 2, pp. 247-276 | DOI | Numdam | MR | Zbl
[88] Polar varieties revisited, 2013 (slides for the Workshop on Computer Algebra and Polynomials in Linz, www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/piene.pdf) | Zbl
[89] Polar varieties revisited, Computer algebra and polynomials. Applications of algebra and number theory (Lecture Notes in Computer Science), Volume 8942, Springer, 2015, pp. 139-150 | MR | Zbl
[90] Theorie der algebraischen Kurven, Bonn, 1839
[91] Traité des propriétés projectives des figures, ouvrage utile à ceux qui s’occupent des applications de la Géométrie descriptive et d’opérations géométriques sur le terrain. Tome second., Gauthier-Villars, 1866 (available at http://gallica.bnf.fr/ark:/12148/bpt6k5484980j)
[92] What is the genus?, Lecture Notes in Mathematics, 2162, Springer, 2016, xvii+184 pages | MR | Zbl
[93] -transforms of local rings and a theorem on multiplicities of ideals, Proc. Camb. Philos. Soc., Volume 57 (1961), pp. 8-17 | DOI | MR | Zbl
[94] Holomorphe und meromorphe abbildungen complexe raüme, Math. Ann., Volume 133 (1957), pp. 328-370 | DOI | Zbl
[95] Quelques remarques sur la géométrie des espaces conormaux, Systèmes différentiels et singularités (Astérisque), Volume 130, Société Mathématique de France, 1985, pp. 161-192 | Numdam | Zbl
[96] Polar varieties and computation of one point in each connected component of a smooth algebraic set, Proceeedings of the 2003 ISSAC, ACM Press (2003), pp. 224-231 | Zbl
[97] Bi-Lipschitz homeomorphic subanalytic sets have bi-Lipschitz homeomorphic tangent cones, Sel. Math., New Ser., Volume 22 (2016) no. 2, pp. 553-559 | DOI | MR | Zbl
[98] Champs radiaux sur une stratification analytique, Travaux en Cours, 39, Hermann, 1991, x+185 pages | MR | Zbl
[99] Classes de Chern des ensembles analytiques, Actualités Mathématiques, Hermann, 2000, 216 pages | Zbl
[100] Some investigations in the geometry of curve and surface elements, Proc. Lond. Math. Soc., Volume 4 (1954), pp. 24-49 | DOI | MR | Zbl
[101] Lectures on Symplectic Geometry, Lecture Notes in Mathematics, 1764, Springer, 2001, xii+217 pages | MR | Zbl
[102] An algebraic proof of Zak’s inequality for the dimension of the Gauss image, Math. Z., Volume 241 (2002) no. 4, pp. 871-881 | DOI | MR | Zbl
[103] Limites d’espaces tangents à une surface normale, Comment. Math. Helv., Volume 76 (2001), pp. 61-88 | DOI | MR | Zbl
[104] Linear components of the tangent cone in the Nash modification of a complex surface singularity, J. Singul., Volume 3 (2011), pp. 83-88 | DOI | MR | Zbl
[105] Holomorphic foliations and characteristic numbers, Commun. Contemp. Math., Volume 7 (2005) no. 5, pp. 583-596 | DOI | MR | Zbl
[106] Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math., Volume 131 (1990) no. 3, pp. 411-491 | DOI | MR | Zbl
[107] Cycles évanescents, sections planes et conditions de Whitney, Singularites à Cargese (Astérisque), Volume 7-8, Société Mathématique de France, 1974, pp. 282-362 | Zbl
[108] Introduction to equisingularity problems, Algebraic Geometry Arcata 1974 (Proceedings of Symposia in Pure Mathematics), Volume 29, American Mathematical Society, 1974, pp. 593-632 | DOI | MR
[109] The hunting of invariants in the geometry of discriminants, Real and Complex singularities, Oslo 1976, Sijthoff & Noordhoff International Publishers, 1976, pp. 565-678 | Zbl
[110] Résolution simultanée, II, Séminaire sur les Singularités des Surfaces 1976-77 (Lecture Notes in Mathematics), Volume 777, Springer, 1976 | Numdam
[111] Variétés polaires 1: Invariants polaires des singularités d’hypersurfaces, Invent. Math., Volume 40 (1977) no. 3, pp. 267-292 | Zbl
[112] Variétés Polaires 2: Multiplicités polaires, sections planes, et conditions de Whitney, Actes de la conférence de géométrie algébrique à La Rábida 1981 (Lecture Notes in Mathematics), Volume 961, Springer, 1981, pp. 314-491 | Zbl
[113] Sur la classification des singularités des espaces analytiques complexes, Proceedings of the International Congress of Mathematicians, 1983, Warszawa, North-Holland, 1983, pp. 763-781 | Zbl
[114] Apparent contours from Monge to Todd, 1830–1930: A century of geometry (Paris, 1989) (Lecture Notes in Physics), Volume 402, Springer, 1992, pp. 55-62 | MR
[115] Projective duality and homogeneous spaces, Encyclopaedia of Mathematical Sciences, 133, Springer, 2005, xiv+250 pages | MR | Zbl
[116] Ensembles et morphismes stratifiés, Bull. Am. Math. Soc., Volume 75 (1969), pp. 240-284 | DOI | Zbl
[117] Limits of tangents and minimality of complex links, Topology, Volume 42 (2003) no. 3, pp. 629-639 | DOI | MR | Zbl
[118] The arithmetical invariants of algebraic loci, Proc. Lond. Math. Soc., Volume 43 (1937), pp. 190-225 | MR | Zbl
[119] The geometrical invariants of algebraic loci, Proc. Lond. Math. Soc., Volume 43 (1937), pp. 127-138 | MR | Zbl
[120] The geometrical invariants of algebraic loci II, Proc. Lond. Math. Soc., Volume 45 (1939), pp. 410-424 | DOI | MR | Zbl
[121] Stratifications de Whitney et Théorème de Bertini-Sard, Invent. Math., Volume 36 (1976), pp. 295-312 | DOI | Zbl
[122] Algebraic curves, Dover Publications, 1962, x+210 pages | MR | Zbl
[123] Homology theory on algebraic varieties, International Series of Monographs on Pure and Applied Mathematics, 6, Pergamon Press, 1958, viii+115 pages | MR | Zbl
[124] Local properties of analytic varieties, Differential and Combinatorial Topology, Princeton University Press, 1965, pp. 205-244 | DOI | Zbl
[125] Tangents to an analytic variety, Ann. Math., Volume 81 (1965) no. 3, pp. 496-549 | DOI | MR | Zbl
[126] Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, American Mathematical Society, 1993, vii+164 pages | MR | Zbl
[127] Le problème des modules pour les branches planes, Hermann, 1986, vii+212 pages | Zbl
Cité par Sources :