Soit une variété munie d’une structure feuilletée de co-dimension un. On démontre plusieurs théorème relatifs à des conditions entraînant que le groupe d’holonomie et le pseudo-groupe d’holonomie d’une certaine feuille est infini.
@article{AIF_1965__15_2_201_0, author = {Sacksteder, Richard and Schwartz, Art J.}, title = {Limit sets of foliations}, journal = {Annales de l'Institut Fourier}, pages = {201--213}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {15}, number = {2}, year = {1965}, doi = {10.5802/aif.213}, mrnumber = {32 #6489}, zbl = {0136.20904}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.213/} }
TY - JOUR AU - Sacksteder, Richard AU - Schwartz, Art J. TI - Limit sets of foliations JO - Annales de l'Institut Fourier PY - 1965 SP - 201 EP - 213 VL - 15 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.213/ DO - 10.5802/aif.213 LA - en ID - AIF_1965__15_2_201_0 ER -
Sacksteder, Richard; Schwartz, Art J. Limit sets of foliations. Annales de l'Institut Fourier, Tome 15 (1965) no. 2, pp. 201-213. doi : 10.5802/aif.213. http://archive.numdam.org/articles/10.5802/aif.213/
[1] On the global behavior of differential equations on two-dimensional manifolds, Proceedings of the American Mathematical Society, vol. 4 (1953), 630-636. | Zbl
,[2] Poincaré-Bendix type theorems for two-dimensional manifolds different from the torus, Annals of Mathematics, vol. 59 (1953), 292-299. | Zbl
,[3] Variétés feuilletées, Annali della Scuola Normale Superiore di Pisa, III, vol. CVI (1962), 367-397. | Numdam | Zbl
,[4] Regulare Kurvenscharen auf den Ringenflächen, Mathematische Annalen, vol. 91 (1924), 135-154. | JFM
,[5] Qualitative Theory of Differential Equations, Princeton University Press (1960). | Zbl
and ,[6] Sur certaines propriétés topologiques des variétés feuilletées, Actualités Scientifiques et Industrielles, Hermann, Paris (1952). | Zbl
,[7] Foliations and pseudogroups, The American Journal of Mathematics, vol. 87 (1965), 79-102. | Zbl
,[8] A generalization of the Poincare-Bendixson theorem to closed two-dimensional manifolds, The American Journal of Mathematics, vol. 85 (1963), 453-458. | Zbl
,Cité par Sources :