On démontre que la compacité locale, qui est une condition suffisante dans certains théorèmes de J.H.C. Whitehead et de D.E. Cohen sur les produits cartésiens, y est aussi nécessaire.
@article{AIF_1968__18_2_281_0, author = {Michael, Ernest}, title = {Local compactness and cartesian products of quotient maps and $K$-spaces}, journal = {Annales de l'Institut Fourier}, pages = {281--286}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, number = {2}, year = {1968}, doi = {10.5802/aif.300}, mrnumber = {39 #6256}, zbl = {0175.19703}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.300/} }
TY - JOUR AU - Michael, Ernest TI - Local compactness and cartesian products of quotient maps and $K$-spaces JO - Annales de l'Institut Fourier PY - 1968 SP - 281 EP - 286 VL - 18 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.300/ DO - 10.5802/aif.300 LA - en ID - AIF_1968__18_2_281_0 ER -
%0 Journal Article %A Michael, Ernest %T Local compactness and cartesian products of quotient maps and $K$-spaces %J Annales de l'Institut Fourier %D 1968 %P 281-286 %V 18 %N 2 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.300/ %R 10.5802/aif.300 %G en %F AIF_1968__18_2_281_0
Michael, Ernest. Local compactness and cartesian products of quotient maps and $K$-spaces. Annales de l'Institut Fourier, Volume 18 (1968) no. 2, pp. 281-286. doi : 10.5802/aif.300. http://archive.numdam.org/articles/10.5802/aif.300/
[1] Linear s-spaces, Proc. Symp. Convergence Structures, U. of Oklahoma, 1965.
,[2] Topologie Générale, Chapters 1 and 2, 3rd ed., Hermann, 1961. | Zbl
,[3] Spaces with weak topology, Quart. J. Math., Oxford Ser. (2) 5 (1954), 77-80. | MR | Zbl
,[4] Topology of metric complexes, Amer. J. Math., 74 (1952), 555-577. | MR | Zbl
.[5] Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115. | MR | Zbl
,[6] General Topology, VanNostrand, (1955). | MR | Zbl
,[7] ﬡo-spaces, J. Math. Mech., 15 (1966), 983-1002. | MR | Zbl
,[8] A note on a theorem of Borsuk, Bull. Amer. Math. Soc, 54 (1958), 1125-1132. | MR | Zbl
,Cited by Sources: