Behavior of biharmonic functions on Wiener's and Royden's compactifications
Annales de l'Institut Fourier, Tome 21 (1971) no. 3, pp. 217-226.

Soit R une variété riemannienne de volume fini, Δ l’opérateur laplacien sur R. Pour certains sous-espaces des algèbres de Wiener et Royden sur R, on construit une décomposition canonique liée à l’opérateur itéré ΔΔ. Si u est une solution de l’équation biharmonique ΔΔu=0, les valeurs de u et Δu à la frontière idéale déterminent les composantes de u suivant la décomposition.

Let R be a smooth Riemannian manifold of finite volume, Δ its Laplace (-Beltrami) operator. Canonical direct-sum decompositions of certain subspaces of the Wiener and Royden algebras of R are found, and for biharmonic functions (those for which ΔΔu=0) the decompositions are related to the values of the functions and their Laplacians on appropriate ideal boundaries.

@article{AIF_1971__21_3_217_0,
     author = {Kwon, Y. K. and Sario, Leo and Walsh, Bertram},
     title = {Behavior of biharmonic functions on {Wiener's} and {Royden's} compactifications},
     journal = {Annales de l'Institut Fourier},
     pages = {217--226},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {3},
     year = {1971},
     doi = {10.5802/aif.387},
     zbl = {0208.13703},
     mrnumber = {49 #5385},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.387/}
}
TY  - JOUR
AU  - Kwon, Y. K.
AU  - Sario, Leo
AU  - Walsh, Bertram
TI  - Behavior of biharmonic functions on Wiener's and Royden's compactifications
JO  - Annales de l'Institut Fourier
PY  - 1971
DA  - 1971///
SP  - 217
EP  - 226
VL  - 21
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.387/
UR  - https://zbmath.org/?q=an%3A0208.13703
UR  - https://www.ams.org/mathscinet-getitem?mr=49 #5385
UR  - https://doi.org/10.5802/aif.387
DO  - 10.5802/aif.387
LA  - en
ID  - AIF_1971__21_3_217_0
ER  - 
Kwon, Y. K.; Sario, Leo; Walsh, Bertram. Behavior of biharmonic functions on Wiener's and Royden's compactifications. Annales de l'Institut Fourier, Tome 21 (1971) no. 3, pp. 217-226. doi : 10.5802/aif.387. http://archive.numdam.org/articles/10.5802/aif.387/

[1] S. Bergman and M. Schiffer, Kernel functions and elliptic differential equations in mathematical physics, Academic Press, New York, (1953), 432 p. | MR 14,876d | Zbl 0053.39003

[2] C. Constaninescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, (1963), 244 p. | Zbl 0112.30801

[3] P.R. Garabedian, Partial differential equations, Wiley, New York, (1964), 672 p. | MR 28 #5247 | Zbl 0124.30501

[4] M. Nakai and L. Sario, Biharmonic classification of Riemannian manifolds, (to appear). | Zbl 0253.31011

[5] M. Nakai and L. Sario, Quasiharmonic classification of Riemannian manifolds, (to appear). | Zbl 0229.31006

[6] G. De Rham, Variétés différentiables, Hermann, Paris, (1960), 196 p. | Zbl 0089.08105

[7] L. SarioM. Nakai, Classification theory of Riemann surfaces, Springer, (1970), 446 p. | MR 41 #8660 | Zbl 0199.40603

[8] L. SarioM. SchifferM. Glasner, The span and principal functions in Riemannian spaces, J. Analyse Math. 15 (1965), 115-134. | MR 32 #1655 | Zbl 0136.09603

[9] I.N. Vekua, New methods for solving elliptic equations, North-Holland, Amsterdam, (1967), 358 p. | MR 35 #3243 | Zbl 0146.34301

Cité par Sources :