On absolute stability
Annales de l'Institut Fourier, Volume 22 (1972) no. 4, p. 265-269

Absolute stability of a compact set is characterized by the cardinality of a fundamental system of positively invariant neighborhoods.

On caractérise la stabilité absolue d’un ensemble compact par les puissances des systèmes fondamentaux de voisinages positifs invariants.

@article{AIF_1972__22_4_265_0,
     author = {McCann, Roger C.},
     title = {On absolute stability},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {22},
     number = {4},
     year = {1972},
     pages = {265-269},
     doi = {10.5802/aif.440},
     zbl = {0252.34050},
     mrnumber = {48 \#11687},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1972__22_4_265_0}
}
McCann, Roger C. On absolute stability. Annales de l'Institut Fourier, Volume 22 (1972) no. 4, pp. 265-269. doi : 10.5802/aif.440. http://www.numdam.org/item/AIF_1972__22_4_265_0/

[1] J. Auslander, P. Seibert, Prolongations and stability in dynamical systems, Ann. Inst. Fourier, Grenoble, 14 (1964), 237-268. | Numdam | MR 31 #455 | Zbl 0128.31303

[2] O. Hajek, Dynamical Systems in the Plane, Academic Press, London, 1968. | MR 39 #1767 | Zbl 0169.54401

[3] O. Hajek, Absolute stability of non-compact sets, J. Differential Equations 9 (1971), 496-508. | MR 42 #8035 | Zbl 0226.34045

[4] K. Kuratowski, Topology Vol. I, Academic Press, London, 1966. | MR 36 #840 | Zbl 0158.40802

[5] R. Mccann, Another characterization of absolute stability, Ann. Inst. Fourier, Grenoble, 21,4 (1971), 175-177. | Numdam | MR 49 #6206 | Zbl 0226.54037

[6] R. Mccann, A classification of centers, Pacific J. Math., 30 (1969), 733-746. | MR 41 #3930 | Zbl 0179.13101