A necessary condition of local solvability for pseudo-differential equations with double characteristics
Annales de l'Institut Fourier, Tome 24 (1974) no. 1, pp. 225-292.

On étudie des opérateurs pseudodifférentiels P(x,D) j=0 + P m-j (x,D) du point de vue de la résolubilité locale et sous l’hypothèse que le symbole principal se factorise sous la forme P m =QL 2 au voisinage (dans le fibré cotangent) d’un point (x 0 ,ξ 0 )L=0 (de plus Q est elliptique en ce point, et est homogène de degré m-2 ; L est homogène de degré 1). On fait l’hypothèse suivante : il existe un nombre complexe z tel que d ξ Re(zL)0 en (x 0 ,ξ 0 ) et tel que la restriction de Im (zL) à la bande bicaractéristique de Re(zL), passant par ce point, a un zéro d’ordre fini k<+ en (x 0 ,ξ 0 ) et change de signe en ce point de moins à plus. On démontre alors que P(x,D) n’est pas localement résoluble en x 0 quels que soient les termes d’ordre inférieur P m-j (j=1,2,...).

Pseudodifferential operators P(x,D) j=0 + P m-j (x,D) are studied, from the viewpoint of local solvability and under the assumption that, micro-locally, the principal symbol factorizes as P m =QL 2 with Q elliptic, homogeneous of degree m-2, and L homogeneous of degree one, satisfying the following condition : there is a point (x 0 ,ξ 0 ) in the characteristic variety L=0 and a complex number z such that d ξ Re (zL)0 at (x 0 ,ξ 0 ) and such that the restriction of Im (zL) to the bicharacteristic strip of Re (zL) vanishes of order k<+ at (x 0 ,ξ 0 ), changing sign there from minus to plus. It is then proved that P(x,D) is not locally solvable at x 0 , regardless of what the lower order terms P m-j (j=1,2,...) might be.

@article{AIF_1974__24_1_225_0,
     author = {Cardoso, Fernando and Tr\`eves, Fran\c{c}ois},
     title = {A necessary condition of local solvability for pseudo-differential equations with double characteristics},
     journal = {Annales de l'Institut Fourier},
     pages = {225--292},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {24},
     number = {1},
     year = {1974},
     doi = {10.5802/aif.499},
     mrnumber = {50 #2726},
     zbl = {0273.35058},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.499/}
}
TY  - JOUR
AU  - Cardoso, Fernando
AU  - Trèves, François
TI  - A necessary condition of local solvability for pseudo-differential equations with double characteristics
JO  - Annales de l'Institut Fourier
PY  - 1974
SP  - 225
EP  - 292
VL  - 24
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.499/
DO  - 10.5802/aif.499
LA  - en
ID  - AIF_1974__24_1_225_0
ER  - 
%0 Journal Article
%A Cardoso, Fernando
%A Trèves, François
%T A necessary condition of local solvability for pseudo-differential equations with double characteristics
%J Annales de l'Institut Fourier
%D 1974
%P 225-292
%V 24
%N 1
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.499/
%R 10.5802/aif.499
%G en
%F AIF_1974__24_1_225_0
Cardoso, Fernando; Trèves, François. A necessary condition of local solvability for pseudo-differential equations with double characteristics. Annales de l'Institut Fourier, Tome 24 (1974) no. 1, pp. 225-292. doi : 10.5802/aif.499. http://archive.numdam.org/articles/10.5802/aif.499/

[1] A. Gilioli and F. Treves, ‘An example in the solvability theory of linear PDEʹsʹ, to appear in Amer. J. of Math. | Zbl

[2] L. Hormander, Linear Partial Differential Operators, Springer, Berlin, 1963. | MR | Zbl

[3] L. Hormander, ‘Pseudo-differential operators and nonelliptic boundary problems, Annals of Math., Vol. 83, (1966), 129-209. | MR | Zbl

[4] L. Hormander, ‘Pseudo-differential operators’, Comm. Pure Appl. Math., Vol. XVIII, (1965), 501-517. | MR | Zbl

[5] S. Mizohata and Y. Ohya, ‘Sur la condition de E. E. Levi concernant des équations hyperboliques’, Publ. Res. Inst. Math. Sci. Kyoto Univ. A, 4 (1968), 511-526. | MR | Zbl

[6] L. Nirenberg and F. Treves, ‘On local solvability of linear partial differential equations. Part I : Necessary conditions’, Comm. Pure Appl. Math., Vol. XXIII, (1970), 1-38. | MR | Zbl

[7] J. Sjostrand, ‘Une classe d'opérateurs pseudodifférentiels à caractéristiques multiples’, C.R. Acad. Sc. Paris, t. 275 (1972), 817-819. | MR | Zbl

[8] F. Treves, Ovcyannikov theorem and hyperdifferential operators, Notas de Matematica, Rio de Janeiro (Brasil), 1968. | Zbl

Cité par Sources :