Soit un processus gaussien séparable et stochastiquement continu, satisfaisant à la condition . On obtient une condition suffisante de continuité presque sûre de , mise en termes de ré-arrangement monotone de . On fait l’application de ce résultat aux séries des fonctions aléatoires, en particulier, aux séries aléatoires de Fourier.
Let be a stochastically continuous, separable, Gaussian process with . A sufficient condition, in terms of the monotone rearrangement of , is obtained for to have continuous sample paths almost surely. This result is applied to a wide class of random series of functions, in particular, to random Fourier series.
@article{AIF_1974__24_2_117_0, author = {Jain, Naresh C. and Marcus, Michael B.}, title = {Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions}, journal = {Annales de l'Institut Fourier}, pages = {117--141}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {2}, year = {1974}, doi = {10.5802/aif.508}, mrnumber = {54 #1356}, zbl = {0283.60041}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.508/} }
TY - JOUR AU - Jain, Naresh C. AU - Marcus, Michael B. TI - Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions JO - Annales de l'Institut Fourier PY - 1974 SP - 117 EP - 141 VL - 24 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.508/ DO - 10.5802/aif.508 LA - en ID - AIF_1974__24_2_117_0 ER -
%0 Journal Article %A Jain, Naresh C. %A Marcus, Michael B. %T Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions %J Annales de l'Institut Fourier %D 1974 %P 117-141 %V 24 %N 2 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.508/ %R 10.5802/aif.508 %G en %F AIF_1974__24_2_117_0
Jain, Naresh C.; Marcus, Michael B. Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions. Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 117-141. doi : 10.5802/aif.508. http://archive.numdam.org/articles/10.5802/aif.508/
[1] Inequalities involving a function and its inverse, SIAM J. Math. Anal., 4 (1973). | MR | Zbl
. and ,[2] The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis, 1 (1967), 290-330. | MR | Zbl
.,[3] Sample functions of the Gaussian process, Ann. of Probability, 1 (1973), 66-103. | MR | Zbl
,[4] Continuité des processus Gaussiens, C.R. Acad. Sci. Paris, 258 (1964), 6058-6060. | MR | Zbl
,[5] Inequalities, Cambridge Univ. Press, (1934), Cambridge, England. | JFM | Zbl
, and ,[6] Conditions for the continuity of sample paths of a Gaussian process, unpublished manuscript, (1972).
,[7] A note on the uniform convergence of stochastic processes, 41 (1970), 1360-1362. | MR | Zbl
and ,[8] Some random series of functions, (1968), D. C. Heath, Lexington, Mass. | MR | Zbl
,[9] Characteristic functions, Second Edition, (1970), Hafner, New York. | MR | Zbl
,[10] A comparaison of continuity conditions for Gaussian processes., Ann. of Probability, 1 (1973), 123-130. | MR | Zbl
,[11] Continuity of Gaussian processes and random Fourier series, Ann. of Probability, 1 (1973), 968-981. | MR | Zbl
,[12] Continuity of Gaussian processes., Trans. Amer. Math. Soc., 151 (1970), 377-392. | MR | Zbl
and ,[13] Stochastic processes, (1953), John Wiley and Sons, New York. | MR | Zbl
,Cité par Sources :