Une nouvelle définition des cônes biréticulés
Annales de l'Institut Fourier, Volume 24 (1974) no. 3, p. 37-41

It is proved that, if E is a vector lattice, the cone of positive linear forms on E, endowed with the topology of simple convergence on E is a bireticule cone. This result leads to a new definition of the bireticule cones, equivalent to the initial one, but much more handy ; it answers positively to an hypothesis made by G. Choquet.

On montre que si E est un espace vectoriel réticulé, le cône des formes linéaires positives sur E, muni de la topologie de la convergence simple sur E est un cône biréticulé.

Ce résultat conduit à une nouvelle définition des cônes biréticulés, équivalents à la définition initiale, mais d’un usage beaucoup plus souple ; ce résultat est la réponse positive à une hypothèse de G. Choquet.

@article{AIF_1974__24_3_37_0,
     author = {Rugy, Alain Goullet De},
     title = {Une nouvelle d\'efinition des c\^ones bir\'eticul\'es},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {24},
     number = {3},
     year = {1974},
     pages = {37-41},
     doi = {10.5802/aif.517},
     zbl = {0287.46013},
     mrnumber = {50 \#14158},
     language = {fr},
     url = {http://www.numdam.org/item/AIF_1974__24_3_37_0}
}
Rugy, Alain Goullet De. Une nouvelle définition des cônes biréticulés. Annales de l'Institut Fourier, Volume 24 (1974) no. 3, pp. 37-41. doi : 10.5802/aif.517. http://www.numdam.org/item/AIF_1974__24_3_37_0/

[1] N. Bourbaki, Espaces Vectoriels Topologiques, Chap. 1 et 2. Paris, Hermann, 1966 (A.S.I. 1189). | Zbl 0050.10703

[2] A. Goullet De Rugy, La théorie des cônes biréticulés, Ann. Inst. Fourier (Grenoble), 21, 4 (1971), 1-64. | Numdam | MR 54 #8249 | Zbl 0215.48001

[3] A. Goullet De Rugy, Un théorème du genre Andô-Edwards pour les Fréchet ordonnés, Pac. J. of Math., 46, 1 (1973), 155-166. | MR 49 #1059 | Zbl 0262.46010

[4] G. Jameson, Ordered linear spaces, Berlin, Springer-Verlag 1970, (Lectures notes in mathematics 141). | MR 55 #10996 | Zbl 0196.13401

[5] Kelley-Namioka, Linear Topological Spaces, Princeton, Van Nostrand, 1963. | Zbl 0115.09902