Comme dans la première partie [Annales de l’Inst. Fourier, 27-3 (1997), 97-113], il s’agit de construire une mesure portée par un compact de mesure de Lebesgue nulle, mais dont la transformée de Fourier tende vers zéro à l’infini aussi vite que possible.
As in Part I [Annales de l’Inst. Fourier, 27-3 (1997), 97-113], our object is to construct a measure whose support has Lebesgue measure zero, but whose Fourier transform drops away extremely fast.
@article{AIF_1978__28_3_123_0, author = {Korner, Thomas-William}, title = {On the theorem of Ivasev-Musatov. II}, journal = {Annales de l'Institut Fourier}, pages = {123--142}, publisher = {Institut Fourier}, volume = {28}, number = {3}, year = {1978}, doi = {10.5802/aif.705}, zbl = {0368.28005}, mrnumber = {80a:42005}, language = {en}, url = {archive.numdam.org/item/AIF_1978__28_3_123_0/} }
Korner, Thomas-William. On the theorem of Ivasev-Musatov. II. Annales de l'Institut Fourier, Tome 28 (1978) no. 3, pp. 123-142. doi : 10.5802/aif.705. http://archive.numdam.org/item/AIF_1978__28_3_123_0/
[1] On the Theorem of Ivašev-Musatov I, Annales de l'Institut Fourier, 27, 3 (1977), 97-115. | Numdam | MR 57 #3721 | Zbl 0353.28001
,