Transformation de Fourier sur les espaces p (L p )
Annales de l'Institut Fourier, Volume 29 (1979) no. 1, p. 189-206

We study the Fourier transform on the spaces p (L p ) of functions belonging locally to L p and with p behaviour at infinity. If 1p,p 2, the Fourier transforms of all functions in p (L p ) are in q (L q ). In the other cases, we state some partial results.

We show that the maximal solid subspace of integrable functions on which the Fourier transform can be defined by extension by continuity is the space 2 (L 1 ).

Nous étudions d’abord la transformation de Fourier sur les espaces p (L p ) qui sont formés de fonctions appartenant localement à L p et se comportant à l’infini comme des éléments de p . Si 1p,p 2, les transformées de Fourier des éléments de p (L p ) appartiennent à q (L q ). Dans les autres cas, nous donnons quelques résultats partiels.

Nous montrons ensuite que 2 (L 1 ) est le plus grand espace vectoriel solide de fonctions mesurables sur lequel la transformation de Fourier puisse se définir par prolongement par continuité.

@article{AIF_1979__29_1_189_0,
     author = {Bertrandias, Jean-Paul and Dupuis, Christian},
     title = {Transformation de Fourier sur les espaces $\ell ^p(L^p)$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {29},
     number = {1},
     year = {1979},
     pages = {189-206},
     doi = {10.5802/aif.734},
     zbl = {0387.42003},
     mrnumber = {82a:43006},
     language = {fr},
     url = {http://www.numdam.org/item/AIF_1979__29_1_189_0}
}
Bertrandias, Jean-Paul; Dupuis, Christian. Transformation de Fourier sur les espaces $\ell ^p(L^p)$. Annales de l'Institut Fourier, Volume 29 (1979) no. 1, pp. 189-206. doi : 10.5802/aif.734. http://www.numdam.org/item/AIF_1979__29_1_189_0/

[1] N. Aronszajn, P. Szeptycki, On general integral transformations, Math. Ann., 163 (1966), 127-154. | MR 32 #8209 | Zbl 0171.12402

[2] A. Benedek, R. Panzone, The spaces Lp, with mixed norm, Duke Math. Journ., 28 (1961), 301-324. | Zbl 0107.08902

[3] J.P. Bertrandias, Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., 101 (1977) 209-247. | MR 58 #23529 | Zbl 0376.46016

[4] J.P. Bertrandias, C. Datry, C. Dupuis, Unions et intersections d'espaces Lp invariantes par translation et convolution, Ann. Inst. Fourier, 28, 2 (1978), 53-84. | Numdam | MR 81g:43005 | Zbl 0365.46029

[5] R. Goldberg, On a space of functions of Wiener, Duke Math. Journ., 34 (1967), 683-691. | MR 36 #703 | Zbl 0172.16203

[6] F. Holland, Harmonic analysis on amalgams of Lp and lq, Journ. London Math. Soc., 2, 10 (175), 295-305. | MR 51 #11013 | Zbl 0314.46029

[7] F. Holland, On the representation of function as Fourier transforms of unbounded measures, Proc. London Math. Soc., 3, 30 (1975), 347-365. | MR 53 #1154 | Zbl 0309.42018

[8] J.P. Kahane, Some random series of function, Heath, 1968. | MR 40 #8095 | Zbl 0192.53801

[9] Y. Katznelson, An introduction to harmonic analysis, Wiley, 1968. | MR 40 #1734 | Zbl 0169.17902

[10] L. Pigno, Restrictions of Lp transforms, Proc. Ann. Math. Soc., 29 (1971), 511-515. | MR 43 #5253 | Zbl 0216.14804

[11] W. Rudin, Fourier analysis on groups, Interscience, 1962. | MR 27 #2808 | Zbl 0107.09603

[12] A.B. Simon, Cesàro summability on groups : characterisation and inversion of Fourier transforms, Function algebras (ed. F.T. Birtel) Scott, Foresman, 1966. | Zbl 0143.15804

[13] J, Stewart, Unbounded positive definite functions, Can. Journ. Math., 21 (1969), 1309-1318. | MR 40 #4689 | Zbl 0197.11701

[14] P. Szeptycki, Some remarks on the extended domain of Fourier transform, Bull. Ann. Math. Soc., 73 (1967), 398-402. | MR 34 #8087 | Zbl 0166.09903

[15] P. Szeptycki, On functions and measures whose Fourier transforms are functions, Math. Ann., 179 (1968), 31-41. | MR 39 #710 | Zbl 0167.41601

[16] N. Wiener, Tauberian theorems, Ann. of Math., 33 (1932), 1-100. | JFM 58.0226.02 | Zbl 0004.05905

[17] A. Zygmund, Trigonometric series, 2 vol., Cambridge, 1959. | Zbl 0085.05601