Good-irreducible inner functions on a polydisc
Annales de l'Institut Fourier, Volume 29 (1979) no. 2, p. 185-210
An explicit formula is developed for Nevanlinna class functions whose behaviour at the boundary is “sufficiently rational” and is then used to deduce the uniqueness of the factorization of such inner functions. A generalization of a theorem of Frostman is given and the above results are then applied to the construction of good and/or irreducible inner functions on a polydisc.
Une formule explicite est développée pour les fonctions de classe de Nevanlinna qui sont “suffisamment rationnelles” sur la frontière et elle est alors utilisée pour déduire l’unicité de la factorisation de telles fonctions intérieures. Une généralisation d’un théorème de Frostman est présentée et les résultats ci-dessus sont alors appliqués pour construire des fonctions intérieures irréductibles et/ou “bonnes” sur un polydisque.
@article{AIF_1979__29_2_185_0,
     author = {Sawyer, Eric T.},
     title = {Good-irreducible inner functions on a polydisc},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {29},
     number = {2},
     year = {1979},
     pages = {185-210},
     doi = {10.5802/aif.746},
     zbl = {0381.32007},
     mrnumber = {82a:32011},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1979__29_2_185_0}
}
Sawyer, Eric T. Good-irreducible inner functions on a polydisc. Annales de l'Institut Fourier, Volume 29 (1979) no. 2, pp. 185-210. doi : 10.5802/aif.746. http://www.numdam.org/item/AIF_1979__29_2_185_0/

[1]P. R. Ahern, Singular sets of inner functions, Indiana Univ. Math. J., 21 (1971), 147-155. | MR 46 #9390 | Zbl 0235.32007

[2]A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta. Math., 81 (1949), 239-255. | MR 10,381e | Zbl 0033.37701

[3]R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier, Grenoble, 20, 1 (1970), 37-76. | Numdam | MR 42 #5088 | Zbl 0186.45302

[4]O. Frostman, Potentiel d'équilibre et capacité des ensembles..., Lunds Univ. Mat. Sem. d., (1935), 1-118. | JFM 61.1262.02 | Zbl 0013.06302

[5]L. L. Helms, Introduction to Potential Theory, Wiley-Interscience, 1969. | MR 41 #5638 | Zbl 0188.17203

[6]E. A. Nordgren, Composition operators, Can. J. Math., 20 (1968), 442-449. | MR 36 #6961 | Zbl 0161.34703

[7] W. Rudin, Function Theory in Polydiscs, Benjamin, 1969. | MR 41 #501 | Zbl 0177.34101

[8] W. Rudin and P. R. Ahern, Factorizations of bounded holomorphic functions, Duke Math. J., 39 (1972), 767-777. | MR 46 #9377 | Zbl 0265.32004

[9]W. Rudin and E. L. Stout, Boundary properties of functions of several complex variables, J. Math. Mech., 14 (1965), 991-1006. | MR 32 #230 | Zbl 0147.11601

[10]J. V. Ryff, Subordinate Hp functions, Duke Math. J., 33 (1966), 347-354. | MR 33 #289 | Zbl 0148.30205

[11]E. Sawyer, Inner functions on polydiscs, Ph. D. thesis, McGill University (1977).

[12]M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publ. Co. | Zbl 0322.30001

[13]A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. | Zbl 0085.05601