Solving power series equations. II. Change of ground field
Annales de l'Institut Fourier, Volume 29 (1979) no. 2, p. 1-23

We study the effect of changing the residue field, on the topological properties of local algebra homomorphisms of analytic algebras (quotients of convergent power series rings). Although injectivity is not preserved, openness and closedness in the Krull topology, simple topology, and inductive topology is preserved.

Nous étudions l’effet du changement du corps de base sur les propriétés topologiques des homomorphismes d’algèbres analytiques (quotient d’anneaux de séries convergentes). Bien que l’injectivité ne soit pas conservée, la propriété pour un homomorphisme d’être ouvert ou fermé est conservée dans la topologie de Krull, ainsi que dans les topologies simple et inductive.

@article{AIF_1979__29_2_1_0,
     author = {Becker, Joseph},
     title = {Solving power series equations. II. Change of ground field},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {29},
     number = {2},
     year = {1979},
     pages = {1-23},
     doi = {10.5802/aif.742},
     zbl = {0413.13016},
     mrnumber = {83c:14003},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1979__29_2_1_0}
}
Becker, Joseph. Solving power series equations. II. Change of ground field. Annales de l'Institut Fourier, Volume 29 (1979) no. 2, pp. 1-23. doi : 10.5802/aif.742. http://www.numdam.org/item/AIF_1979__29_2_1_0/

[1] S. S. Abhyankar, Local Analytic Geometry, Academic Press, 1964. | MR 31 #173 | Zbl 0205.50401

[2] S. S. Abhyankar, and M. Van Der Put, Homomorphisms of analytic local rings, Creile's J., 42 (1970), 26-60. | MR 41 #5353 | Zbl 0193.00501

[3] S. S. Abhyankar, and T. T. Moh, A reduction theorem for divergent power series, Creile's J., 241 (1970), 27-33. | MR 41 #3800 | Zbl 0191.04403

[4] M. Artin, Algebraic approximation of structures over complete local rings, Inst. des Hautes études Scientifiques Publ. Math., 36 (1969), 23-58. | Numdam | MR 42 #3087 | Zbl 0181.48802

[5] M. Artin. On solutions of analytic equations, Invent. Math., 5 (1968), 277-291. | MR 38 #344 | Zbl 0172.05301

[6] J. Becker, Expose on a Conjecture of Tougeron, Ann. Inst. Fourier, 27, 4 (1977), 9-27. | Numdam | MR 58 #10904 | Zbl 0337.14002

[7] J. Becker, Nonflatness of analytic tensor product, Math. Ann. to appear. | Zbl 0404.12018

[8] J. Becker and L. Lipshitz, Remarks on the Elementary Theories of Formal and Convergent Power Series, Fund. Math., to appear. | Zbl 0526.13016

[9] J. Becker, and W. Zame, Applications of Functional Analysis to solutions of Power Series Equations, preprint. | Zbl 0413.13015

[10] R. Berger, R. Kiehl, E. Kunz and H. J. Nastold, Differentialrechnung in der analytischen Geometrie, Lecture Notes in Mathematics No. 38, Springer Verlag, 1967. | MR 37 #469 | Zbl 0163.03202

[11] Bourbaki, Commutative Algebra (Herman, Paris), 1964.

[12] A. M. Gabrielov, Formal relations between analytic functions, Izv. Akad. Nauk. S.S.R., 37 (1973), 1056-1088. | Zbl 0297.32007

[13] H. Grauert, and R. Remmert, Analytische Stellenalgebraen, Springer Verlag, 1971. | Zbl 0231.32001

[14] G. Harris, and P. Eakin, When Φ(f) Convergent Implies f is Convergent, Math. Ann., 229 (1977), 201-210. | MR 56 #3001 | Zbl 0355.13010

[15] N. Jacobson, Lectures in abstract algebra, Vol. 3, Van Nostrand, 1967.

[16] M. Nagata, Local rings, Interscience publishers, New York, 1962. | MR 27 #5790 | Zbl 0123.03402

[17] G. Pfister, and D. Popescu, Die Strenge Approximation-seigenschaft lokaler Ringe, Invent. Math., 30 (1975), 145-174. | MR 52 #395 | Zbl 0293.13011

[18] J. C. Tougeron, Courbes analytiques sur un germe d'espace analytique et applications, Ann. Inst. Fourier, Grenoble, 26, 2 (1976), 117-131. | Numdam | MR 54 #3011 | Zbl 0318.32005

[19] O. Zariski, and P. Samuel, Commutative Algebra Vols. I et II, Van Nostrand, 1960. | MR 22 #11006 | Zbl 0121.27801