On construit, sur une variété riemannienne de dimension ou , les extensions autoadjointes de la restriction du laplacien aux fonctions nulles au voisinage d’un point de . On calcule explicitement les valeurs propres de .
We construct, on a 2 or 3-dimensional Riemannian manifold, the self-adjoint extensions of the Laplace operator restricted to the functions vanishing in some neigbhourhood of some point of . We compute explicitely the eigenvalues of .
@article{AIF_1982__32_3_275_0, author = {Colin De Verdi\`ere, Yves}, title = {Pseudo-laplaciens. {I}}, journal = {Annales de l'Institut Fourier}, pages = {275--286}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {3}, year = {1982}, doi = {10.5802/aif.890}, mrnumber = {84k:58221}, zbl = {0489.58034}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.890/} }
Colin De Verdière, Yves. Pseudo-laplaciens. I. Annales de l'Institut Fourier, Tome 32 (1982) no. 3, pp. 275-286. doi : 10.5802/aif.890. http://archive.numdam.org/articles/10.5802/aif.890/
[1] Trans. A.M.S., t. 252 (1979), 275-295. | Zbl
, , ,[2] Le spectre d'une variété riemannienne, Lecture Notes in Math., 194 (1971), Springer. | MR | Zbl
, et ,[3] Analyse numérique d'un problème de valeurs propres à haute précision (application aux fonctions automorphes), Preprint I.H.E.S., (1978). | Zbl
,[4] Sur les zéros de la fonction zêta de Selberg, Preprint I.H.E.S., (1979). | Zbl
, ,[5] Theory of ordinary differential equations, Mc Graw-Hill, (1955). | MR | Zbl
, ,[6] Une nouvelle démonstration du prolongement méromorphe des séries d'Eisenstein, CRAS, t. 293 (1981), 361-363. | MR | Zbl
,[7] Zbl
, Ann. of Math., 60 (1954), 140-145. |[8]
, , , Comm. Math. Phys., 77 (1980), 87-100.[9] Numerische Berechnung..., Diplomarbeit, Heidelberg (1977).
,[10] Elementary theory of Eisenstein series, John Wiley, (1973). | MR | Zbl
,[11] SL2 (R), Addison-Wesley (1975).
,[12] Scattering theory for automorphic functions, Annals of Math. Studies, 87 (1976). | MR | Zbl
, ,[13] Methods of modern math. physics, vol. II, Academic Press (1975).
, ,[14] Russian Math. Surveys, 34 (1979), 79-153. | Zbl
,Cité par Sources :