Félix, Yves; Halperin, Stephen; Thomas, Jean-Claude
Sur certaines algèbres de Lie de dérivations
Annales de l'institut Fourier, Tome 32 (1982) no. 4 , p. 143-150
Zbl 0487.55005 | MR 84m:55011
doi : 10.5802/aif.897
URL stable : http://www.numdam.org/item?id=AIF_1982__32_4_143_0

Il est démontré que toute a.d.g.c. ayant un modèle minimal de Sullivan de type fini peut être représentée par une certaine algèbre de Lie différentielle graduée de dérivations. En particulier on peut ainsi représenter le type d’homotopie rationnelle d’un espace topologique.
Every c.d.g.a. with a Sullivan minimal model of finite type can be represented by a certain graded differential Lie algebra of derivations. This permits such a representation for the rational homotopy type of a topological space.

Bibliographie

[1] P. Andrews and M. Arkowitz, Sullivan's minimal and higher order whitehead products, Can. J. of Math., XXX n° 5 (1978), 961-982. MR 80b:55008 | Zbl 0441.55012

[2] H. J. Baues and J. M. Lemaire, Minimal models in homotopy theory, Math. Ann., 225 (1977), 219-242. MR 55 #4174 | Zbl 0322.55019

[3] A. K. Bousfield and W.K.A.M. Gugenheim, On the PL de Rham theory and rational homotopy type, Memoirs of the A.M.S., 179 (1976). Zbl 0338.55008

[4] S. Halperin, Lectures on minimal models, Preprint n° 111, Lille, 1977.

[5] D. Quillen, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. MR 41 #2678 | Zbl 0191.53702

[6] G. Sjödin, Hopf algebras and derivations, J. of Algebra, 64 (1980), 218-229. MR 84a:16016 | Zbl 0429.16008

[7] M. Schlessinger and J. D. Stasheff, Deformation theory and rational homotopy type, Preprint.

[8] D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S., 47. Numdam | Zbl 0374.57002

[9] D. Tanré, Modèle de Chen-Quillen-Sullivan, Thèse n° 535, Univ. des Sciences et Tech. de Lille I.