A result on extension of C.R. functions
Annales de l'Institut Fourier, Tome 33 (1983) no. 3, pp. 113-120.

Soit $\Omega$ un ouvert de ${\mathbf{C}}^{n}$, de classe ${C}^{4}$ près de ${z}_{0}\in \partial \Omega$, $\lambda$ une fonction holomorphe convenable près de ${z}_{0}$. Sachant que l’on sait résoudre (voir [M. Derridj, Annali.Sci. Norm. Pisa, Série IV, vol. IX (1981)]) le problème : $\overline{\partial }u=\lambda f\left(f\left(0,1\right)$ forme donnée dans $U\left({z}_{0}\right)$, $\overline{\partial }$ fermée) dans $U\left({z}_{0}\right)$ avec supp$\left(u\right)\subset \overline{\Omega }\cap U\left({z}_{0}\right)$, on déduit un résultat d’extension de fonctions $C.R.$ sur $\partial \Omega \cap U\left({z}_{0}\right)$, en fonctions holomorphes dans $\Omega \cap V\left({z}_{0}\right)$.

Let $\Omega$ an open set in ${\mathbf{C}}^{4}$ near ${z}_{0}\in \partial \Omega$, $\lambda$ a suitable holomorphic function near ${z}_{0}$. If we know that we can solve the following problem (see [M. Derridj, Annali. Sci. Norm. Pisa, Série IV, vol. IX (1981)]) : $\overline{\partial }u=\lambda f$, ($f$ is a $\left(0,1\right)$ form, $\overline{\partial }$ closed in $U\left({z}_{0}\right)$ in $U\left({z}_{0}\right)$ with supp$\left(u\right)\subset \overline{\Omega }\cap U\left({z}_{0}\right)$, then we deduce an extension result for $C.R.$ functions on $\partial \Omega \cap U\left({z}_{0}\right)$, as holomorphic fonctions in $\Omega \cap V\left({z}_{0}\right)$.

@article{AIF_1983__33_3_113_0,
author = {Derridj, Makhlouf and Fornaess, John Erik},
title = {A result on extension of C.R. functions},
journal = {Annales de l'Institut Fourier},
pages = {113--120},
publisher = {Institut Fourier},
volume = {33},
number = {3},
year = {1983},
doi = {10.5802/aif.933},
zbl = {0518.32010},
mrnumber = {85f:32031},
language = {en},
url = {http://archive.numdam.org/articles/10.5802/aif.933/}
}
Derridj, Makhlouf; Fornaess, John Erik. A result on extension of C.R. functions. Annales de l'Institut Fourier, Tome 33 (1983) no. 3, pp. 113-120. doi : 10.5802/aif.933. http://archive.numdam.org/articles/10.5802/aif.933/

[1] A. Andreotti and C.D. Hill, E.E. convexity and the H. Lewy problem. Part I : Reduction to vanishing theorems, Ann. Scuola Normale Sup. di Pisa, 26 (1972). | Numdam | Zbl 0256.32007

[2] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. IHES, vol. 24-25. | Numdam | Zbl 0138.06604

[3] M.S. Baouendi and F. Treves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. Math., 113 (1981). | MR 82f:35057 | Zbl 0491.35036

[4] E. Bedford and J.E. Fornaess, Local extension of C.R. function from weakly pseudoconvex boundaries, Michigan Math. J., 25. | MR 80c:32014 | Zbl 0401.32007

[5] A. Bogges, C.R. extendability near a point where the first leviform vanishes, Duke Math. J., 43 (3). | Zbl 0509.32006

[6] M. Derridj, Inégalités de Carleman et extension locale des fonctions holomorphes, Annali. Sci. Norm. Pisa, Serie IV vol. IX (1981). | Numdam | Zbl 0548.32013

[7] C.D. Hill and Taïani, Families of analytic discs in Cn with boundaries on a prescribed C.R. submanifold, Ann. Scuola Norm. Pisa, 4-5 (1978). | Numdam | Zbl 0399.32008

[8] L. Hörmander, Introduction to complex analysis in several variables, van Nostrand. | Zbl 0138.06203

[9] L. Hörmander, L²-estimates and existence theorems for the ∂-operator, Acta Math., 113 (1965). | MR 31 #3691 | Zbl 0158.11002

[10] J.J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math., 81 (1965). | MR 31 #1399 | Zbl 0166.33802

[11] H. Lewy, On the local character... Ann. Math., 64 (1956).

[12] R. Nirenberg, On the Lewy extension phenomenon, Trans. Amer. Math. Soc., 168 (1972). | MR 46 #392 | Zbl 0241.32006

[13] R.O. Wells, On the local holomorphic hull... Comm. P.A.M., vol. XIX (1966). | Zbl 0142.33901