Des techniques topologiques sont employées pour démontrer un théorème d’existence globale de -solutions aux systèmes non-linéaires des équations aux dérivées partielles d’ordre Ces systèmes sont sous-déterminés et doivent satisfaire certaines conditions de convexité. Les solutions ne sont pas uniques mais elles satisfont certaines approximations sur les dérivées d’ordre inférieur. Le résultat principal, qui comporte aussi le cas relatif, généralise les travaux de M. Gromov sur les systèmes non-linéaires d’ordre 1.
Geometrical techniques are employed to prove a global existence theorem for -solutions to underdetermined systems of non-linear order partial differential equations, , which satisfy certain convexity conditions. The solutions are not unique, but satisfy given approximations on lower order derivatives. The main result, which includes the relative case generalizes the work of M. Gromov on non-linear first order systems.
@article{AIF_1983__33_3_121_0, author = {Spring, David}, title = {Convex integration of non-linear systems of partial differential equations}, journal = {Annales de l'Institut Fourier}, pages = {121--177}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {3}, year = {1983}, doi = {10.5802/aif.934}, mrnumber = {85i:58126}, zbl = {0507.35019}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.934/} }
TY - JOUR AU - Spring, David TI - Convex integration of non-linear systems of partial differential equations JO - Annales de l'Institut Fourier PY - 1983 SP - 121 EP - 177 VL - 33 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.934/ DO - 10.5802/aif.934 LA - en ID - AIF_1983__33_3_121_0 ER -
%0 Journal Article %A Spring, David %T Convex integration of non-linear systems of partial differential equations %J Annales de l'Institut Fourier %D 1983 %P 121-177 %V 33 %N 3 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.934/ %R 10.5802/aif.934 %G en %F AIF_1983__33_3_121_0
Spring, David. Convex integration of non-linear systems of partial differential equations. Annales de l'Institut Fourier, Tome 33 (1983) no. 3, pp. 121-177. doi : 10.5802/aif.934. http://archive.numdam.org/articles/10.5802/aif.934/
[1] Convex Integration of Differential Relations, Math. USSR. Izvestia, 7 (1973), 329-343. | MR | Zbl
,[2] Removal of Singularities of Smooth Mappings, Math. USSR Izvestia, 5 (1971), 615-638. | MR | Zbl
and ,[3] Isometric Imbeddings and Immersions, Soviet Math. Dokl., 11 (1970), 794-797. | MR | Zbl
,[4] Notes on Immersion Theory, I.H.E.S. (1981).
,[5] Immersions of Manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276. | MR | Zbl
,[6] Elimination géométrique des singularités avec applications aux équations aux dérivées partielles, thèse de 3e cycle, Université de Provence à Marseille, (1978).
,[7] On C1 Isometric Imbeddings I, Nederl. Akad. Wet. Proc., Ser. A-58 (1955), 545-556. | MR | Zbl
,[8] On C1 Isometric Imbeddings, Annals of Math., 60 (1954), 383-396. | MR | Zbl
,[9] Convex Integration of Non-Linear Systems of Partial Differential Equations (preprint) (1979).
,Cité par Sources :