A value-distribution criterion for the class L log L and some related questions
Annales de l'Institut Fourier, Volume 35 (1985) no. 4, p. 127-150

We give a necessary and sufficient condition for an analytic function in H 1 to have real part in class L logL. This condition contains the classical one of Zygmund; other variants are also given.

Nous donnons une condition nécessaire et suffisante pour qu’une fonction analytique dans H 1 ait une partie réelle dans la classe L logL. Cette condition généralise la condition classique de Zygmund ; on donne aussi d’autres conditions suffisantes.

@article{AIF_1985__35_4_127_0,
     author = {Essen, M. and Shea, D. F. and Stanton, C. S.},
     title = {A value-distribution criterion for the class $L\textasciitilde {\rm log} L$ and some related questions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {35},
     number = {4},
     year = {1985},
     pages = {127-150},
     doi = {10.5802/aif.1030},
     zbl = {0563.30025},
     mrnumber = {87e:30041},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1985__35_4_127_0}
}
Essen, M.; Shea, D. F.; Stanton, C. S. A value-distribution criterion for the class $L~{\rm log} L$ and some related questions. Annales de l'Institut Fourier, Volume 35 (1985) no. 4, pp. 127-150. doi : 10.5802/aif.1030. http://www.numdam.org/item/AIF_1985__35_4_127_0/

[1] A. Baernstein, Integral means, univalent functions and circular symmetrization, Acta Math., 133 (1974), 133-169. | MR 54 #5456 | Zbl 0315.30021

[2] A. Baernstein, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J., 27 (1978), 833-852. | MR 80g:30022 | Zbl 0372.42007

[3] M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in Rn, Ark. f. Mat., 18 (1980), 53-72. | MR 82h:31004 | Zbl 0455.31009

[4] D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math., 26 (1977), 182-205. | MR 57 #14163 | Zbl 0372.60112

[5] D. L. Burkholder, Brownian Motion and the Hardy Spaces Hp, in Aspects of Contemporary Complex Analysis, editors Brannan and Clunie, Academic Press 1980, 97-118. | MR 84a:30061 | Zbl 0497.30028

[6] P. Duren, Theory of Hp-spaces, Academic Press, 1970. | MR 42 #3552 | Zbl 0215.20203

[7] M. Essén and D. F. Shea, On some questions of uniqueness in the theory of symmetrization, Ann. Acad. Sci. Fennicae, Series A. I. Math., 4 (1978/1979), 311-340. | MR 81d:30002 | Zbl 0392.31001

[8] M. Essén and D. F. Shea, Some recent results on conjugate functions in the unit disk. Proc. of the 18th Scand. Congress of Mathematicians, 1980, Progress in Mathematics, Vol. 11, Birkhäuser. | Zbl 0462.30025

[8a] M. Essén and K. Haliste, J. L. Lewis and D.F. Shea, Harmonic Majorization and classical analysis, J. London Math. Soc. (to appear). | Zbl 0558.30027

[9] K. Haliste, Estimates of harmonic measure, Ark. f. Mat., 6 (1965), 1-31. | MR 34 #1547 | Zbl 0178.13801

[10] K. Haliste, Harmonic Majorization, Report No. 5 (1982), Department of Mathematics, University of Umeå, Sweden.

[11] W. K. Hayman, Meromorphic Functions, Oxford University Press, 1964. | MR 29 #1337 | Zbl 0115.06203

[12] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, vol. 1, Academic Press, 1976. | MR 57 #665 | Zbl 0419.31001

[13] W. K. Hayman and Ch. Pommerenke, On analytic functions of bounded mean oscillation, Bull. London Math. Soc., 10 (1978), 219-224. | MR 81g:30044 | Zbl 0386.30011

[14] W. K. Hayman and A. Weitsman, On the coefficients of functions omitting values, Math. Proc. Cambridge Philos. Soc., 77 (1975), 119-137. | MR 50 #13495 | Zbl 0301.30011

[15] O. Lehto, A majorant principle in the theory of functions, Math. Scand., 1 (1953), 5-17. | MR 15,115d | Zbl 0051.05906

[16] R. Nevanlinna, Analytic functions, Springer-Verlag, 1970. | Zbl 0199.12501

[17] K. E. Petersen, Brownian motion, Hardy spaces and Bounded Mean Oscillation, London Math. Soc. Lecture Note Series, 28 (1977). | MR 58 #31383 | Zbl 0363.60004

[18] L. I. Ronkin, Introduction to the theory of entire functions of several complex variables, Transl. Math. Monographs, Vol. 44, Amer. Math. Soc., Providence, R. I. 1974. | MR 49 #10901 | Zbl 0286.32004

[19] C. S. Stanton, Riesz mass and growth problems for subharmonic functions, Thesis, University of Wisconsin 1982.

[20] W. Stoll, About entire and meromorphic functions of exponential type, Proc. of Symp. in Pure Math., Vol. XI, Amer. Math. Soc., Providence, R.I. 1968, 392-430. | MR 38 #4706 | Zbl 0177.34201

[21] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo 1959. | MR 22 #5712 | Zbl 0087.28401

[22] A. Zygmund, Sur les fonctions conjuguées, Fund. Math., 13 (1929), 284-303. | JFM 55.0751.02