The trace inequality and eigenvalue estimates for Schrödinger operators
Annales de l'Institut Fourier, Tome 36 (1986) no. 4, pp. 207-228.

Soit Φ une fonction radiale, non négative, localement intégrable sur Rn, qui ne s’accroît pas en |x|. Posons (Tf)(x)=RnΦ(x-y)f(y)dyf0 et xRn. Étant donné 1<p< et v0, nous démontrons qu’il existe C>0 de sorte que Rn(Tf)(x)pv(x)dxCRnf(x)pdx pour tout f0, si et seulement si, C>0 existe avec QT(xQv)(x)pdxCQv(x)dx< pour tout cube dyadique Q, où p=p/(p-1).

On se sert de ce résultat pour raffiner des approximations récentes de la part de C.L. Fefferman et D.H. Phong de la distribution de valeurs propres d’opérateurs de Schrödinger.

Suppose Φ is a nonnegative, locally integrable, radial function on Rn, which is nonincreasing in |x|. Set (Tf)(x)=RnΦ(x-y)f(y)dy when f0 and xRn. Given 1<p< and v0, we show there exists C>0 so that Rn(Tf)(x)pv(x)dxCRnf(x)pdx for all f0, if and only if C>0 exists with QT(xQv)(x)pdxCQv(x)dx< for all dyadic cubes Q, where p=p/(p-1). This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.

@article{AIF_1986__36_4_207_0,
     author = {Kerman, R. and Sawyer, Eric T.},
     title = {The trace inequality and eigenvalue estimates for {Schr\"odinger} operators},
     journal = {Annales de l'Institut Fourier},
     pages = {207--228},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {36},
     number = {4},
     year = {1986},
     doi = {10.5802/aif.1074},
     mrnumber = {88b:35150},
     zbl = {0591.47037},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1074/}
}
TY  - JOUR
AU  - Kerman, R.
AU  - Sawyer, Eric T.
TI  - The trace inequality and eigenvalue estimates for Schrödinger operators
JO  - Annales de l'Institut Fourier
PY  - 1986
SP  - 207
EP  - 228
VL  - 36
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1074/
DO  - 10.5802/aif.1074
LA  - en
ID  - AIF_1986__36_4_207_0
ER  - 
%0 Journal Article
%A Kerman, R.
%A Sawyer, Eric T.
%T The trace inequality and eigenvalue estimates for Schrödinger operators
%J Annales de l'Institut Fourier
%D 1986
%P 207-228
%V 36
%N 4
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1074/
%R 10.5802/aif.1074
%G en
%F AIF_1986__36_4_207_0
Kerman, R.; Sawyer, Eric T. The trace inequality and eigenvalue estimates for Schrödinger operators. Annales de l'Institut Fourier, Tome 36 (1986) no. 4, pp. 207-228. doi : 10.5802/aif.1074. https://www.numdam.org/articles/10.5802/aif.1074/

[1] D. R. Adams, A trace inequality for generalized potentials, Studia Math., 48 (1973), 99-105. | MR | Zbl

[2] D. R. Adams, On the existence of capacitary strong type estimates in Rn, Ark. Mat., 14 (1976), 125-140. | MR | Zbl

[3] D. R. Adams, Lectures on Lp-potential theory (preprint), Univ. of Umeä, 2 (1981).

[4] N. Aronszajn and K. T. Smith, Theory of Bessel potentials I, Ann. Inst. Fourier, 11 (1961), 385-475. | Numdam | MR | Zbl

[5] S. Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. | MR | Zbl

[6] S. Chanillo and R. L. Wheeden, Lp estimates for fractional integrals and Sobolev inequalities, with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. | MR | Zbl

[7] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250. | MR | Zbl

[8] B. Dahlberg, Regularity properties of Riesz potentials, Ind. U. Math. J., 28 (1979), 257-268. | MR | Zbl

[9] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., 7 (1982), 77-116. | MR | Zbl

[10] C. L. Fefferman, The Uncertainty Principle, Bull. A.M.S., (1983), 129-206. | MR | Zbl

[11] M. De Guzman, Differentiation of Integrals in Rn, Lecture Notes in Math., vol. 481, Springer-Verlag, Berlin and New York, 1975. | MR | Zbl

[12] K. Hansson, Continuity and compactness of certain convolution operators, Institut Mittage-Leffler, Report No. 9, (1982).

[13] R. Kerman and E. Sawyer, Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms and Carleson measures, announcement in Bull. A.M.S., 12 (1985), 112-116. | MR | Zbl

[14] V. G. Maz'Ya, On capacitary estimates of the strong type for the fractional norm, Zap. Sen. LOMI Leningrad, 70 (1977), 161 - 168. | Zbl

[15] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. A.M.S., 192 (1974), 251-275. | MR | Zbl

[16] M. Reed and B. Simon, Methods of Mathematical Physics, Vol. I, Academic Press, New York and London, 1972. | Zbl

[17] E. Sawyer, Weighted norm inequalities for fractional maximal operators, C.M.S. Conf. Proc., 1 (1980), 283-309. | MR | Zbl

[18] E. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math., 75 (1982), 1-11. | MR | Zbl

[19] E. M. Stein, The characterization of functions arising as potentials I, Bull. Amer. Math. Soc., 67 (1961), 102-104, II (IBID), 68 (1962), 577-582. | Zbl

[20] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, 2nd edition, Princeton University Press, 1970. | MR | Zbl

[21] J.-O. Strömberg and R. L. Wheeden, Fractional integrals on weighted Hp and Lp spaces, Trans. Amer. Math., Soc., 287 (1985), 293-321. | Zbl

  • Cao, Jun; Gao, Mengyao; Jin, Yongyang; Wang, Chao Characterizations of infinitesimal relative boundedness for higher order Schrödinger operators, Journal of Mathematical Analysis and Applications, Volume 543 (2025) no. 2, p. 128975 | DOI:10.1016/j.jmaa.2024.128975
  • Zhao, Yuan; Tang, Lin Estimates for negative eigenvalues of higher-order Schrödinger type operators, Advances in Operator Theory, Volume 9 (2024) no. 1 | DOI:10.1007/s43036-023-00302-9
  • Ooi, K. H. A note on Maz'ya-Verbitsky capacitary inequalities, Analysis Mathematica, Volume 50 (2024) no. 3, p. 787 | DOI:10.1007/s10476-024-00037-6
  • Hoang, Cong; Moen, Kabe; Pérez, Carlos Pointwise estimates for rough operators with applications to Sobolev inequalities, Journal d'Analyse Mathématique (2024) | DOI:10.1007/s11854-024-0345-0
  • Parfenov, Anton Igorevich Inductive methods for Hardy inequality on trees, Ufa Mathematical Journal, Volume 16 (2024) no. 2, p. 36 | DOI:10.13108/2024-16-2-36
  • Cao, Jun; Dou, Xiaoshen; Gao, Mengyao; Jin, Yongyang Local potential operator and uniform resolvent estimate for generalized Schrödinger operator in Orlicz spaces, Mathematische Nachrichten, Volume 296 (2023) no. 10, p. 4533 | DOI:10.1002/mana.202200166
  • Mamedov, Farman; Monsurrò, Sara Sobolev inequality with non-uniformly degenerating gradient, Electronic Journal of Qualitative Theory of Differential Equations (2022) no. 24, p. 1 | DOI:10.14232/ejqtde.2022.1.24
  • Imerlishvili, Giorgi; Meskhi, Alexander A note on the trace inequality for Riesz potentials, Georgian Mathematical Journal, Volume 28 (2021) no. 5, p. 739 | DOI:10.1515/gmj-2020-2077
  • Cassano, Biagio; Cossetti, Lucrezia; Fanelli, Luca Eigenvalue bounds and spectral stability of Lamé operators with complex potentials, Journal of Differential Equations, Volume 298 (2021), p. 528 | DOI:10.1016/j.jde.2021.07.017
  • Mamedov, Farman A Poincare’s inequality with non-uniformly degenerating gradient, Monatshefte für Mathematik, Volume 194 (2021) no. 1, p. 151 | DOI:10.1007/s00605-020-01506-4
  • Arcozzi, Nicola; Mozolyako, Pavel; Perfekt, Karl-Mikael Some properties related to trace inequalities for the multi-parameter Hardy operators on poly-trees, Analysis and Mathematical Physics, Volume 9 (2019) no. 3, p. 937 | DOI:10.1007/s13324-019-00327-5
  • Lee, Yoonjung; Seo, Ihyeok A note on eigenvalue bounds for Schrödinger operators, Journal of Mathematical Analysis and Applications, Volume 470 (2019) no. 1, p. 340 | DOI:10.1016/j.jmaa.2018.10.006
  • Seo, Ihyeok A note on the Schrödinger smoothing effect, Mathematische Nachrichten, Volume 292 (2019) no. 11, p. 2481 | DOI:10.1002/mana.201800502
  • Mamedov, Farman; Shukurov, Yashar A Sawyer-type sufficient condition for the weighted Poincaré inequality, Positivity, Volume 22 (2018) no. 3, p. 687 | DOI:10.1007/s11117-017-0537-2
  • Korobkov, Mikhail V.; Kristensen, Jan The Trace Theorem, the Luzin N- and Morse–Sard Properties for the Sharp Case of Sobolev–Lorentz Mappings, The Journal of Geometric Analysis, Volume 28 (2018) no. 3, p. 2834 | DOI:10.1007/s12220-017-9936-7
  • Seo, Ihyeok On absolute continuity of the spectrum of periodic Schrödinger operators, Monatshefte für Mathematik, Volume 180 (2016) no. 4, p. 893 | DOI:10.1007/s00605-015-0815-7
  • Seo, Ihyeok From resolvent estimates to unique continuation for the Schrödinger equation, Transactions of the American Mathematical Society, Volume 368 (2016) no. 12, p. 8755 | DOI:10.1090/tran/6635
  • Seo, Ihyeok A note on local behavior of eigenfunctions of the Schrödinger operator, Journal of Mathematical Physics, Volume 56 (2015) no. 6 | DOI:10.1063/1.4922115
  • Tupputi, Maria Rosaria Weighted Inequalities in Some Potential Spaces on the Upper Half Space of ℝ n+1, Potential Analysis, Volume 42 (2015) no. 1, p. 293 | DOI:10.1007/s11118-014-9434-5
  • Seo, Ihyeok CARLEMAN INEQUALITIES FOR FRACTIONAL LAPLACIANS AND UNIQUE CONTINUATION, Taiwanese Journal of Mathematics, Volume 19 (2015) no. 5 | DOI:10.11650/tjm.19.2015.5624
  • Seo, Ihyeok On minimal support properties of solutions of Schrödinger equations, Journal of Mathematical Analysis and Applications, Volume 414 (2014) no. 1, p. 21 | DOI:10.1016/j.jmaa.2013.12.047
  • Wang, Yu; Xing, Yuming Inequalities for two type potential operators on differential forms, Journal of Mathematical Analysis and Applications, Volume 417 (2014) no. 2, p. 774 | DOI:10.1016/j.jmaa.2014.03.048
  • El Aïdi, Mohammed A lower bound for the number of negative eigenvalues on a Euclidean space and on a complete Riemannian manifold, Journal of Pseudo-Differential Operators and Applications, Volume 5 (2014) no. 4, p. 481 | DOI:10.1007/s11868-014-0098-0
  • Arcozzi, Nicola; Rochberg, Richard; Sawyer, Eric T.; Wick, Brett D. Potential Theory on Trees, Graphs and Ahlfors-regular Metric Spaces, Potential Analysis, Volume 41 (2014) no. 2, p. 317 | DOI:10.1007/s11118-013-9371-8
  • El Aïdi, Mohammed Sur le nombre des valeurs propres négatives dʼun opérateur elliptique, Bulletin des Sciences Mathématiques, Volume 137 (2013) no. 4, p. 434 | DOI:10.1016/j.bulsci.2012.10.005
  • El Aïdi, Mohammed Positivity criteria for a hyperbolic Schrödinger operator, Bulletin des Sciences Mathématiques, Volume 137 (2013) no. 5, p. 643 | DOI:10.1016/j.bulsci.2012.12.006
  • Tanaka, Hitoshi; Terasawa, Yutaka Positive operators and maximal operators in a filtered measure space, Journal of Functional Analysis, Volume 264 (2013) no. 4, p. 920 | DOI:10.1016/j.jfa.2012.12.003
  • Tanaka, Hitoshi; Gunawan, Hendra The Local Trace Inequality for Potential Type Integral Operators, Potential Analysis, Volume 38 (2013) no. 2, p. 653 | DOI:10.1007/s11118-012-9291-z
  • Lemarié-Rieusset, Pierre Gilles Multipliers and Morrey Spaces, Potential Analysis, Volume 38 (2013) no. 3, p. 741 | DOI:10.1007/s11118-012-9295-8
  • Tupputi, Maria Rosaria Characterization of Carleson Measures for Besov Spaces on Homogeneous Trees, Trends in Harmonic Analysis, Volume 3 (2013), p. 399 | DOI:10.1007/978-88-470-2853-1_15
  • Krbec, Miroslav; Schmeisser, Hans-Jürgen On dimension-free Sobolev imbeddings I, Journal of Mathematical Analysis and Applications, Volume 387 (2012) no. 1, p. 114 | DOI:10.1016/j.jmaa.2011.08.061
  • Sawano, Yoshihiro; Sugano, Satoko; Tanaka, Hitoshi Orlicz–Morrey Spaces and Fractional Operators, Potential Analysis, Volume 36 (2012) no. 4, p. 517 | DOI:10.1007/s11118-011-9239-8
  • Krbec, Miroslav; Schmeisser, Hans-Jürgen On dimension-free Sobolev imbeddings II, Revista Matemática Complutense, Volume 25 (2012) no. 1, p. 247 | DOI:10.1007/s13163-011-0068-5
  • Frazier, Michael W.; Verbitsky, Igor E. Global Green’s Function Estimates, Around the Research of Vladimir Maz'ya III, Volume 13 (2010), p. 105 | DOI:10.1007/978-1-4419-1345-6_5
  • Phuc, Nguyen Cong Quasilinear Riccati Type Equations with Super-Critical Exponents, Communications in Partial Differential Equations, Volume 35 (2010) no. 11, p. 1958 | DOI:10.1080/03605300903585344
  • Kinzebulatov, Damir; Shartser, Leonid Schrödinger operators and unique continuation. Towards an optimal result, Journal of Functional Analysis, Volume 258 (2010) no. 8, p. 2662 | DOI:10.1016/j.jfa.2009.09.019
  • Moen, Kabe Weighted inequalities for multilinear fractional integral operators, Collectanea mathematica, Volume 60 (2009) no. 2, p. 213 | DOI:10.1007/bf03191210
  • Barceló, J. A.; Bennett, J.M.; Ruiz, A.; Vilela, M. C. Local smoothing for Kato potentials in three dimensions, Mathematische Nachrichten, Volume 282 (2009) no. 10, p. 1391 | DOI:10.1002/mana.200610808
  • Adams, David R. My Love Affair with the Sobolev Inequality, Sobolev Spaces In Mathematics I, Volume 8 (2009), p. 1 | DOI:10.1007/978-0-387-85648-3_1
  • Bensikaddour, Djemaïa; Gala, Sadek; Lahmar-Benbernou, Amina Regularity of solutions of Poisson’s equation in multiplier spaces, Periodica Mathematica Hungarica, Volume 57 (2008) no. 1, p. 1 | DOI:10.1007/s10998-008-7001-9
  • Gala, Sadek Application of the Trace Inequality to the Poisson Equation, Positivity, Volume 12 (2008) no. 2, p. 289 | DOI:10.1007/s11117-007-2125-3
  • Cascante, Carme; Ortega, Joaquin M. Carleson measures for weighted Hardy-sobolev spaces, Nagoya Mathematical Journal, Volume 186 (2007), p. 29 | DOI:10.1017/s0027763000009351
  • Maz′ya, Vladimir G.; Verbitsky, Igor E. Form boundedness of the general second‐order differential Operator, Communications on Pure and Applied Mathematics, Volume 59 (2006) no. 9, p. 1286 | DOI:10.1002/cpa.20122
  • Ionescu, Alexandru D.; Schlag, Wilhelm Agmon-Kato-Kuroda theorems for a large class of perturbations, Duke Mathematical Journal, Volume 131 (2006) no. 3 | DOI:10.1215/s0012-7094-06-13131-9
  • Barceló, Juan A.; Ruiz, Alberto; Vega, Luis Some dispersive estimates for Schrödinger equations with repulsive potentials, Journal of Functional Analysis, Volume 236 (2006) no. 1, p. 1 | DOI:10.1016/j.jfa.2006.03.012
  • Gala, Sadek The form boundedness criterion for the Laplacian operator, Journal of Mathematical Analysis and Applications, Volume 323 (2006) no. 2, p. 1253 | DOI:10.1016/j.jmaa.2005.11.037
  • Sjödin, Tord Weighted L p -inequalities for multi-parameter Riesz type potentials and strong fractional maximal operators, Mathematische Annalen, Volume 337 (2006) no. 2, p. 317 | DOI:10.1007/s00208-006-0035-5
  • Kondratiev, Vladimir; Maz'ya, Vladimir; Shubin, Mikhail Discreteness of Spectrum and Strict Positivity Criteria for Magnetic Schrödinger Operators, Communications in Partial Differential Equations, Volume 29 (2005) no. 3-4, p. 489 | DOI:10.1081/pde-120030406
  • Maz’ya, V.G.; Verbitsky, I.E. Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Inventiones mathematicae, Volume 162 (2005) no. 1, p. 81 | DOI:10.1007/s00222-005-0439-y
  • Cruz-Uribe, D; Martell, J.M; Pérez, C Extrapolation from A∞ weights and applications, Journal of Functional Analysis, Volume 213 (2004) no. 2, p. 412 | DOI:10.1016/j.jfa.2003.09.002
  • Maz’ya, Vladimir; Shaposhnikova, Tatyana Characterization of Multipliers in Pairs of Besov Spaces, Operator Theoretical Methods and Applications to Mathematical Physics (2004), p. 365 | DOI:10.1007/978-3-0348-7926-2_35
  • Cascante, Carme; Ortega, Joaquin M. Imbedding potentials in tent spaces, Journal of Functional Analysis, Volume 198 (2003) no. 1, p. 106 | DOI:10.1016/s0022-1236(02)00087-3
  • Maz'ya, Vladimir G.; Verbitsky, Igor E. The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Mathematica, Volume 188 (2002) no. 2, p. 263 | DOI:10.1007/bf02392684
  • Cascante, Carme; Ortega, Joaquin M. Norm Inequalities for Potential-Type Operators in Homogeneous Spaces, Mathematische Nachrichten, Volume 228 (2001) no. 1, p. 85 | DOI:10.1002/1522-2616(200108)228:1<85::aid-mana85>3.0.co;2-d
  • Maz’ya, V.; Shaposhnikova, T. Traces and Extensions of Multipliers in Pairs of Sobolev Spaces, Complex Analysis, Operators, and Related Topics (2000), p. 221 | DOI:10.1007/978-3-0348-8378-8_19
  • Shen, Zhongwei On Fundamental Solutions of Generalized Schrödinger Operators, Journal of Functional Analysis, Volume 167 (1999) no. 2, p. 521 | DOI:10.1006/jfan.1999.3455
  • Shaposhnikova, Tatyana Multipliers of differentiable functions and their traces, The Maz’ya Anniversary Collection (1999), p. 155 | DOI:10.1007/978-3-0348-8675-8_10
  • Verbitsky, I. E. Nonlinear potentials and trace inequalities, The Maz’ya Anniversary Collection (1999), p. 323 | DOI:10.1007/978-3-0348-8672-7_18
  • Kalton, N.; Verbitsky, I. Nonlinear equations and weighted norm inequalities, Transactions of the American Mathematical Society, Volume 351 (1999) no. 9, p. 3441 | DOI:10.1090/s0002-9947-99-02215-1
  • Shen, Zhongwei On the number of negative eigenvalues for a Schrödinger operator with magnetic field, Communications in Mathematical Physics, Volume 182 (1996) no. 3, p. 637 | DOI:10.1007/bf02506420
  • Aikawa, Hiroaki Potential theory part II, Potential Theory—Selected Topics, Volume 1633 (1996), p. 102 | DOI:10.1007/bfb0093412
  • Maz'ya, Vladimir G; Verbitsky, Igor E Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers, Arkiv för Matematik, Volume 33 (1995) no. 1, p. 81 | DOI:10.1007/bf02559606
  • Olsen, Peder A. Fractional Integration, morrey spaces and a schrödinger equation, Communications in Partial Differential Equations, Volume 20 (1995) no. 11-12, p. 2005 | DOI:10.1080/03605309508821161
  • Sweezy, Caroline Relating Different Conditions for the Positivity of the Schrödinger Operator, Rocky Mountain Journal of Mathematics, Volume 23 (1993) no. 1 | DOI:10.1216/rmjm/1181072628
  • Pérez, C. On a theorem of Muckenhoupt and Wheeden and a weighted inequality related to Schrödinger operators, Transactions of the American Mathematical Society, Volume 340 (1993) no. 2, p. 549 | DOI:10.1090/s0002-9947-1993-1072105-7
  • Verbitsky, I. E. Weighted norm inequalities for maximal operators and Pisier's theorem on factorization through Lp?, Integral Equations and Operator Theory, Volume 15 (1992) no. 1, p. 124 | DOI:10.1007/bf01193770
  • Egorov, Yuri V.; Kondrat’ev, Vladimir A. On estimates for the eigen-values in some elliptic problems, Operator Calculus and Spectral Theory (1992), p. 51 | DOI:10.1007/978-3-0348-8623-9_5
  • Vodop'yanov, S. K. Weighted Lp-potential theory on homogeneous groups, Siberian Mathematical Journal, Volume 33 (1992) no. 2, p. 201 | DOI:10.1007/bf00971091
  • Aikawa, Hiroaki Comparison of LP- capacity and hausdorff measure, Complex Variables, Theory and Application: An International Journal, Volume 15 (1990) no. 3, p. 223 | DOI:10.1080/17476939008814453
  • Chanillo, Sagun; Sawyer, Eric Unique continuation for Δ+𝑣 and the C. Fefferman-Phong class, Transactions of the American Mathematical Society, Volume 318 (1990) no. 1, p. 275 | DOI:10.1090/s0002-9947-1990-0958886-6
  • Schechter, Martin The spectrum of the Schrödinger operator, Transactions of the American Mathematical Society, Volume 312 (1989) no. 1, p. 115 | DOI:10.1090/s0002-9947-1989-0955491-4
  • Schechter, Martin Weighted norm inequalities for potential operators, Transactions of the American Mathematical Society, Volume 308 (1988) no. 1, p. 57 | DOI:10.1090/s0002-9947-1988-0946429-3
  • Sawyer, Eric T. A characterization of two weight norm inequalities for fractional and Poisson integrals, Transactions of the American Mathematical Society, Volume 308 (1988) no. 2, p. 533 | DOI:10.1090/s0002-9947-1988-0930072-6
  • Kerman, Ron; Sawyer, Eric Carleson measures and multipliers of Dirichlet-type spaces, Transactions of the American Mathematical Society, Volume 309 (1988) no. 1, p. 87 | DOI:10.1090/s0002-9947-1988-0957062-1
  • Bonami, A.; Johnson, R. Tent Spaces Based on the Lorentz Spaces, Mathematische Nachrichten, Volume 132 (1987) no. 1, p. 81 | DOI:10.1002/mana.19871320107
  • Schechter, Martin Weighted norm estimates for Sobolev spaces, Transactions of the American Mathematical Society, Volume 304 (1987) no. 2, p. 669 | DOI:10.1090/s0002-9947-1987-0911089-3

Cité par 76 documents. Sources : Crossref