Points of order p of generic formal groups
Annales de l'Institut Fourier, Tome 38 (1988) no. 4, p. 17-32
Il y a beaucoup d’analogues entre les courbes elliptiques et les groupes formels de hauteur finie. Dans cet article on utilise les groupes formels génériques de Lubin-Tate pour développer pour les points d’ordre p sur un groupe formel, les idées de structure de niveau et l’accouplement e n déjà connus dans la théorie des courbes elliptiques.
There are many similarities between elliptic curves and formal groups of finite height. The points of order p of a generic formal group are studied in order to develop the formal group analogue (applied to points of order p) of the concept of level structure and that of the e n -pairing known in elliptic curve theory.
@article{AIF_1988__38_4_17_0,
     author = {Zimmermann, Karl},
     title = {Points of order $p$ of generic formal groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {38},
     number = {4},
     year = {1988},
     pages = {17-32},
     doi = {10.5802/aif.1148},
     zbl = {0644.14016},
     mrnumber = {90a:14065},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1988__38_4_17_0}
}
Zimmermann, Karl. Points of order $p$ of generic formal groups. Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 17-32. doi : 10.5802/aif.1148. https://www.numdam.org/item/AIF_1988__38_4_17_0/

[1] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967. | MR 38 #5742 | Zbl 0194.35301

[2] E. Artin, Geometric Algebra, Interscience Publishers, New York, 1957. | MR 18,553e | Zbl 0077.02101

[3] V. G. Drinfel'D, Elliptic modules, Math. USSR Sbornik, Vol. 23, N° 4, (1974), 561-592. | MR 52 #5580 | Zbl 0321.14014

[4] N. Katz and B. Mazur, Arithmetic Moduli of Eliptic Curves, Princeton University Press, New Jersey, 1985. | Zbl 0576.14026

[5] S. Lang, Elliptic curves : Diophantine analysis, Springer Verlag 1978. | MR 81b:10009 | Zbl 0388.10001

[6] J. Lubin, One parameter formal Lie groups over p-adic integer rings, Ann. of Math., 81 (1965), 380-387.

[7] J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math., 81 (1965), 380-387. | MR 30 #3094 | Zbl 0128.26501

[8] J. Lubin and J. Tate, Formal moduli for one parameter formal Lie group, Bull. Soc. Math. France, 94 (1966), 49-60. | Numdam | MR 39 #214 | Zbl 0156.04105

[9] J. Lubin, Canonical subgroups of formal groups, Trans. Amer. Math. Soc., 251 (1979), 103-127. | MR 80j:14039 | Zbl 0431.14014

[10] J. Lubin, The local Kronecker-Weber Theorem, Trans. Amer. Math. Soc., 267 (1981), 133-138. | MR 82i:12017 | Zbl 0476.12014

[11] M. Nagata, Local Rings, Interscience Publishers, New York, 1962. | MR 27 #5790 | Zbl 0123.03402