Maslov indices on the metaplectic group Mp(n)
Annales de l'Institut Fourier, Tome 40 (1990) no. 3, pp. 537-555.

Nous utilisons des propriétés de Mp(n) pour construire des fonctions μ:Mp(n)Z8 associées aux éléments de la grassmanienne lagrangienne Λ (n), qui généralisent l’indice sur Mp(n) défini par Jean Leray dans son “Analyse Lagrangienne”. À l’aide de ces constructions, nous identifions Mp(n) avec un sous-ensemble de Sp(n)×Z8, muni d’une topologie et d’une structure algébrique convenables.

We use the properties of Mp(n) to construct functions μ:Mp(n)Z8 associated with the elements of the lagrangian grassmannian Λ (n) which generalize the Maslov index on Mp(n) defined by J. Leray in his “Lagrangian Analysis”. We deduce from these constructions the identity between Mp(n) and a subset of Sp(n)×Z8, equipped with appropriate algebraic and topological structures.

@article{AIF_1990__40_3_537_0,
     author = {Gosson, Maurice De},
     title = {Maslov indices on the metaplectic group $Mp(n)$},
     journal = {Annales de l'Institut Fourier},
     pages = {537--555},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {40},
     number = {3},
     year = {1990},
     doi = {10.5802/aif.1223},
     mrnumber = {92e:22027},
     zbl = {0705.22013},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1223/}
}
TY  - JOUR
AU  - Gosson, Maurice De
TI  - Maslov indices on the metaplectic group $Mp(n)$
JO  - Annales de l'Institut Fourier
PY  - 1990
SP  - 537
EP  - 555
VL  - 40
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1223/
DO  - 10.5802/aif.1223
LA  - en
ID  - AIF_1990__40_3_537_0
ER  - 
%0 Journal Article
%A Gosson, Maurice De
%T Maslov indices on the metaplectic group $Mp(n)$
%J Annales de l'Institut Fourier
%D 1990
%P 537-555
%V 40
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1223/
%R 10.5802/aif.1223
%G en
%F AIF_1990__40_3_537_0
Gosson, Maurice De. Maslov indices on the metaplectic group $Mp(n)$. Annales de l'Institut Fourier, Tome 40 (1990) no. 3, pp. 537-555. doi : 10.5802/aif.1223. https://www.numdam.org/articles/10.5802/aif.1223/

[G1] M. De Gosson, La définition de l'indice de Maslov sans hypothèse de transversalité, C.R. Acad. Sci. Paris, t. 310, Série I (1990), 279-282. | MR | Zbl

[G2] M. De Gosson, La relation entre Sp∞, revêtement universel du groupe symplectique Sp et Sp × ℤ, C.R. Acad. Sci. Paris, t. 310, Série I (1990), 245-248. | Zbl

[G3] M. De Gosson, The structure of q-symplectic geometry, to appear in : Journal des Mathématiques Pures et Appliquées, Paris, 1990. | Zbl

[GS] V. Guillemin, S. Sternberg, Geometric Asymptotics, Math. Surveys 14, A.M.S., Providence, R.I., 1977. | MR | Zbl

[L] J. Leray, Lagrangian Analysis and Quantum Mechanics, The M.I.T. Press, Cambridge, London, 1981, (Analyse Lagrangienne, R.C.P. 25, Strasbourb, 1978 ; Collège de France 1976-1977).

[LV] G. Lion, M. Vergne, The Weil representation, Maslov index and Theta series, Birkhäuser (Progress in Mathematics), Boston, Basel, Bruxelles, 1980. | Zbl

[W] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math., 111, 1964. | MR | Zbl

  • Manero, Jorge Imprints of the underlying structure of physical theories, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, Volume 68 (2019), p. 71 | DOI:10.1016/j.shpsb.2019.06.005
  • Savale, Nikhil A Gutzwiller type trace formula for the magnetic Dirac operator, Geometric and Functional Analysis, Volume 28 (2018) no. 5, p. 1420 | DOI:10.1007/s00039-018-0462-y
  • Dias, Nuno Costa; Prata, João Nuno Wigner functions on non-standard symplectic vector spaces, Journal of Mathematical Physics, Volume 59 (2018) no. 1 | DOI:10.1063/1.5001069
  • Cappiello, Marco; Schulz, René; Wahlberg, Patrik Conormal distributions in the Shubin calculus of pseudodifferential operators, Journal of Mathematical Physics, Volume 59 (2018) no. 2 | DOI:10.1063/1.5022778
  • de Gosson, Maurice A.; Nicacio, Fernando Relative phase shifts for metaplectic isotopies acting on mixed Gaussian states, Journal of Mathematical Physics, Volume 59 (2018) no. 5 | DOI:10.1063/1.5026586
  • de Gosson, Maurice A. Metaplectic Operators, Born-Jordan Quantization, Volume 182 (2016), p. 173 | DOI:10.1007/978-3-319-27902-2_12
  • de Gosson, Maurice A. Paths of canonical transformations and their quantization, Reviews in Mathematical Physics, Volume 27 (2015) no. 06, p. 1530003 | DOI:10.1142/s0129055x15300034
  • de Gosson, Maurice A.; Luef, Franz Metaplectic group, symplectic Cayley transform, and fractional Fourier transforms, Journal of Mathematical Analysis and Applications, Volume 416 (2014) no. 2, p. 947 | DOI:10.1016/j.jmaa.2014.03.013
  • Nunes, João P. Degenerating Kähler structures and geometric quantization, Reviews in Mathematical Physics, Volume 26 (2014) no. 09, p. 1430009 | DOI:10.1142/s0129055x1430009x
  • de Gosson, Maurice Symplectic covariance properties for Shubin and Born–Jordan pseudo-differential operators, Transactions of the American Mathematical Society, Volume 365 (2012) no. 6, p. 3287 | DOI:10.1090/s0002-9947-2012-05742-4
  • Baier, Thomas; Mourão, José M.; Nunes, João P. Quantization of abelian varieties: Distributional sections and the transition from Kähler to real polarizations, Journal of Functional Analysis, Volume 258 (2010) no. 10, p. 3388 | DOI:10.1016/j.jfa.2010.01.023
  • De Gosson, Maurice; De Gosson, Serge; Piccione, Paolo On a product formula for the Conley–Zehnder index of symplectic paths and its applications, Annals of Global Analysis and Geometry, Volume 34 (2008) no. 2, p. 167 | DOI:10.1007/s10455-008-9106-z
  • de Gosson, Maurice A Semi-classical propagation of wavepackets for the phase space Schrödinger equation: interpretation in terms of the Feichtinger algebra, Journal of Physics A: Mathematical and Theoretical, Volume 41 (2008) no. 9, p. 095202 | DOI:10.1088/1751-8113/41/9/095202
  • DE GOSSON, MAURICE METAPLECTIC REPRESENTATION, CONLEY–ZEHNDER INDEX, AND WEYL CALCULUS ON PHASE SPACE, Reviews in Mathematical Physics, Volume 19 (2007) no. 10, p. 1149 | DOI:10.1142/s0129055x07003152
  • de Gosson, Maurice A.; de Gosson, Serge M. Extension of the Conley-Zehnder index, a product formula, and an application to the Weyl representation of metaplectic operators, Journal of Mathematical Physics, Volume 47 (2006) no. 12 | DOI:10.1063/1.2390661
  • Gosson, Maurice A de Symplectically covariant Schrödinger equation in phase space, Journal of Physics A: Mathematical and General, Volume 38 (2005) no. 42, p. 9263 | DOI:10.1088/0305-4470/38/42/007
  • Gosson, Maurice A. De. On the Weyl Representation of Metaplectic Operators, Letters in Mathematical Physics, Volume 72 (2005) no. 2, p. 129 | DOI:10.1007/s11005-005-4391-y
  • De Gosson, Maurice Semiclassical wavefunctions and Schrodinger equation, Hyperbolic Differential Operators And Related Problems (2003) | DOI:10.1201/9780203911143.ch18
  • Binz, Ernst; Schempp, Walter Entanglement, Parataxy, and Cosmology, Jean Leray ’99 Conference Proceedings (2003), p. 483 | DOI:10.1007/978-94-017-2008-3_32
  • Gosson, Maurice A de The lquotsymplectic camel principlerquot and semiclassical mechanics, Journal of Physics A: Mathematical and General, Volume 35 (2002) no. 32, p. 6825 | DOI:10.1088/0305-4470/35/32/305
  • Gosson, Maurice de The quantum motion of half-densities and the derivation of Schrödinger's equation, Journal of Physics A: Mathematical and General, Volume 31 (1998) no. 18, p. 4239 | DOI:10.1088/0305-4470/31/18/013
  • A. de Gosson, Maurice Cocycles de demazure-kashiwara et géométrie métaplectique, Journal of Geometry and Physics, Volume 9 (1992) no. 3, p. 255 | DOI:10.1016/0393-0440(92)90031-u

Cité par 22 documents. Sources : Crossref