Nous utilisons des propriétés de
We use the properties of
@article{AIF_1990__40_3_537_0, author = {Gosson, Maurice De}, title = {Maslov indices on the metaplectic group $Mp(n)$}, journal = {Annales de l'Institut Fourier}, pages = {537--555}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {3}, year = {1990}, doi = {10.5802/aif.1223}, mrnumber = {92e:22027}, zbl = {0705.22013}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1223/} }
TY - JOUR AU - Gosson, Maurice De TI - Maslov indices on the metaplectic group $Mp(n)$ JO - Annales de l'Institut Fourier PY - 1990 SP - 537 EP - 555 VL - 40 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1223/ DO - 10.5802/aif.1223 LA - en ID - AIF_1990__40_3_537_0 ER -
Gosson, Maurice De. Maslov indices on the metaplectic group $Mp(n)$. Annales de l'Institut Fourier, Tome 40 (1990) no. 3, pp. 537-555. doi : 10.5802/aif.1223. https://www.numdam.org/articles/10.5802/aif.1223/
[G1] La définition de l'indice de Maslov sans hypothèse de transversalité, C.R. Acad. Sci. Paris, t. 310, Série I (1990), 279-282. | MR | Zbl
,[G2] La relation entre Sp∞, revêtement universel du groupe symplectique Sp et Sp × ℤ, C.R. Acad. Sci. Paris, t. 310, Série I (1990), 245-248. | Zbl
,[G3] The structure of q-symplectic geometry, to appear in : Journal des Mathématiques Pures et Appliquées, Paris, 1990. | Zbl
,[GS] Geometric Asymptotics, Math. Surveys 14, A.M.S., Providence, R.I., 1977. | MR | Zbl
, ,[L] Lagrangian Analysis and Quantum Mechanics, The M.I.T. Press, Cambridge, London, 1981, (Analyse Lagrangienne, R.C.P. 25, Strasbourb, 1978 ; Collège de France 1976-1977).
,[LV] The Weil representation, Maslov index and Theta series, Birkhäuser (Progress in Mathematics), Boston, Basel, Bruxelles, 1980. | Zbl
, ,[W] Sur certains groupes d'opérateurs unitaires, Acta Math., 111, 1964. | MR | Zbl
,- Imprints of the underlying structure of physical theories, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, Volume 68 (2019), p. 71 | DOI:10.1016/j.shpsb.2019.06.005
- A Gutzwiller type trace formula for the magnetic Dirac operator, Geometric and Functional Analysis, Volume 28 (2018) no. 5, p. 1420 | DOI:10.1007/s00039-018-0462-y
- Wigner functions on non-standard symplectic vector spaces, Journal of Mathematical Physics, Volume 59 (2018) no. 1 | DOI:10.1063/1.5001069
- Conormal distributions in the Shubin calculus of pseudodifferential operators, Journal of Mathematical Physics, Volume 59 (2018) no. 2 | DOI:10.1063/1.5022778
- Relative phase shifts for metaplectic isotopies acting on mixed Gaussian states, Journal of Mathematical Physics, Volume 59 (2018) no. 5 | DOI:10.1063/1.5026586
- Metaplectic Operators, Born-Jordan Quantization, Volume 182 (2016), p. 173 | DOI:10.1007/978-3-319-27902-2_12
- Paths of canonical transformations and their quantization, Reviews in Mathematical Physics, Volume 27 (2015) no. 06, p. 1530003 | DOI:10.1142/s0129055x15300034
- Metaplectic group, symplectic Cayley transform, and fractional Fourier transforms, Journal of Mathematical Analysis and Applications, Volume 416 (2014) no. 2, p. 947 | DOI:10.1016/j.jmaa.2014.03.013
- Degenerating Kähler structures and geometric quantization, Reviews in Mathematical Physics, Volume 26 (2014) no. 09, p. 1430009 | DOI:10.1142/s0129055x1430009x
- Symplectic covariance properties for Shubin and Born–Jordan pseudo-differential operators, Transactions of the American Mathematical Society, Volume 365 (2012) no. 6, p. 3287 | DOI:10.1090/s0002-9947-2012-05742-4
- Quantization of abelian varieties: Distributional sections and the transition from Kähler to real polarizations, Journal of Functional Analysis, Volume 258 (2010) no. 10, p. 3388 | DOI:10.1016/j.jfa.2010.01.023
- On a product formula for the Conley–Zehnder index of symplectic paths and its applications, Annals of Global Analysis and Geometry, Volume 34 (2008) no. 2, p. 167 | DOI:10.1007/s10455-008-9106-z
- Semi-classical propagation of wavepackets for the phase space Schrödinger equation: interpretation in terms of the Feichtinger algebra, Journal of Physics A: Mathematical and Theoretical, Volume 41 (2008) no. 9, p. 095202 | DOI:10.1088/1751-8113/41/9/095202
- METAPLECTIC REPRESENTATION, CONLEY–ZEHNDER INDEX, AND WEYL CALCULUS ON PHASE SPACE, Reviews in Mathematical Physics, Volume 19 (2007) no. 10, p. 1149 | DOI:10.1142/s0129055x07003152
- Extension of the Conley-Zehnder index, a product formula, and an application to the Weyl representation of metaplectic operators, Journal of Mathematical Physics, Volume 47 (2006) no. 12 | DOI:10.1063/1.2390661
- Symplectically covariant Schrödinger equation in phase space, Journal of Physics A: Mathematical and General, Volume 38 (2005) no. 42, p. 9263 | DOI:10.1088/0305-4470/38/42/007
- On the Weyl Representation of Metaplectic Operators, Letters in Mathematical Physics, Volume 72 (2005) no. 2, p. 129 | DOI:10.1007/s11005-005-4391-y
- Semiclassical wavefunctions and Schrodinger equation, Hyperbolic Differential Operators And Related Problems (2003) | DOI:10.1201/9780203911143.ch18
- Entanglement, Parataxy, and Cosmology, Jean Leray ’99 Conference Proceedings (2003), p. 483 | DOI:10.1007/978-94-017-2008-3_32
- The
symplectic camel principle and semiclassical mechanics, Journal of Physics A: Mathematical and General, Volume 35 (2002) no. 32, p. 6825 | DOI:10.1088/0305-4470/35/32/305 - The quantum motion of half-densities and the derivation of Schrödinger's equation, Journal of Physics A: Mathematical and General, Volume 31 (1998) no. 18, p. 4239 | DOI:10.1088/0305-4470/31/18/013
- Cocycles de demazure-kashiwara et géométrie métaplectique, Journal of Geometry and Physics, Volume 9 (1992) no. 3, p. 255 | DOI:10.1016/0393-0440(92)90031-u
Cité par 22 documents. Sources : Crossref