The analytic and wave-front sets of a distribution which is a solution of a regular holonomic differential system are shown to coincide. More generally, we give comparison theorems for solutions of a regular holonomic system of microdifferential equations in various spaces of microfunctions, as a simple extension of a result of Kashiwara.
On montre la coïncidence des fronts d’onde et analytique d’une distribution satisfaisant un système différentiel holonome régulier. Plus généralement on donne des théorèmes de comparaison de solutions de systèmes microdifférentiels holonomes réguliers dans différents espaces de microfonctions, à partir d’un théorème de Kashiwara.
@article{AIF_1992__42_3_695_0, author = {Andronikof, Emmanuel}, title = {On the $C^\infty $-singularities of regular holonomic distributions}, journal = {Annales de l'Institut Fourier}, pages = {695--705}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {3}, year = {1992}, doi = {10.5802/aif.1306}, mrnumber = {93h:58146}, zbl = {0756.58046}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1306/} }
TY - JOUR AU - Andronikof, Emmanuel TI - On the $C^\infty $-singularities of regular holonomic distributions JO - Annales de l'Institut Fourier PY - 1992 SP - 695 EP - 705 VL - 42 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1306/ DO - 10.5802/aif.1306 LA - en ID - AIF_1992__42_3_695_0 ER -
%0 Journal Article %A Andronikof, Emmanuel %T On the $C^\infty $-singularities of regular holonomic distributions %J Annales de l'Institut Fourier %D 1992 %P 695-705 %V 42 %N 3 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1306/ %R 10.5802/aif.1306 %G en %F AIF_1992__42_3_695_0
Andronikof, Emmanuel. On the $C^\infty $-singularities of regular holonomic distributions. Annales de l'Institut Fourier, Volume 42 (1992) no. 3, pp. 695-705. doi : 10.5802/aif.1306. http://archive.numdam.org/articles/10.5802/aif.1306/
[A1] Microlocalisation tempérée. Application aux distributions holonômes sur une variété complexe. Sém. Eq. aux Dériv. Part. École Polytechnique, exposé 2, 20 octobre 1987. | Numdam | Zbl
,[A2] Microlocalisation tempérée des distributions et des fonctions holomorphes, I and II, C.R. Acad. Sci., t. 303 (1986), 347-350 & t. 304, n° 17 (1987), 511-514 & Thèse d'État Univ. Paris-Nord (1987). | MR | Zbl
,[BS] Décomposition microlocale analytique des distributions, Ann. Inst. Fourier Grenoble, t. 29, fasc. 3 (1979), 101-124. | Numdam | MR | Zbl
, ,[Bj] Book to appear at Kluwer.
,[Bo] Propagation des singularités différentiables pour des opérateurs à coefficients analytiques, Astérisque, 34-35 (1976), 43-91. | Numdam | MR | Zbl
,[HS] A vanishing theorem for holonomic modules with positive characteristic varieties. Pub. R.I.M.S. Kyoto Univ., 26 (1990), 529-534. | MR | Zbl
, ,[H1] The wave-front set of the fundamental solution of a hyperbolic operator with double characteristics. Preprint Lund Univ., (1990).
,[H2] The Analysis of Linear Partial Differential Operators, Vol. I and III, Grundlehren der math. Wiss, 256 and 274, Springer, (1985). | Zbl
,[K] The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, 20 (1984), 319-365. | MR | Zbl
,[KK] On holonomic systems of micro-differential equations III, systems with regular singularities, Publ. RIMS, 17 (1981), 813-979. | MR | Zbl
, ,[KS] Sheaves on Manifolds. Grundlehren der math. Wiss., 292, Springer, (1990). | Zbl
, ,[MS] Fourier integral operators with complex valued phase functions, Lecture Notes in Math., 459, Springer (1975), 120-223. | MR | Zbl
, ,[SKK] Hyperfunctions and pseudo-differential equations. Lecture Note in Math, 287, Springer (1973), 265-529. | MR | Zbl
, , ,[S] Conditions de positivité dans une variété symplectique complexe. Application à l'étude des microfonctions. Ann. Sc. Ec. Norm. Sup., 14 (1981), 121-139. | Numdam | MR | Zbl
,[Z] Holonomic systems with regular singularities and wavefront sets of Feynmann integrals. (Russian.) Funkt. Anal. i Prilozh, 22 (1988), 71-72. | MR | Zbl
,Cited by Sources: