Nous donnons la preuve d’une version microlocale d’un résultat de W. Luo et P. Sarnak concernant la répartition asymptotique des fonctions de Wigner associées aux séries d’Eisenstein sur . La preuve utilise les opérateurs de Hecke, et n’est donc valable que pour les sous-groupes de congruence de .
In this paper we prove microlocal version of the equidistribution theorem for Wigner distributions associated to Eisenstein series on . This generalizes a recent result of W. Luo and P. Sarnak who proves equidistribution for . The averaged versions of these results have been proven by Zelditch for an arbitrary finite-volume surface, but our proof depends essentially on the presence of Hecke operators and works only for congruence subgroups of . In the proof the key estimates come from applying Meurman’s and Good’s results on -functions associated to holomorphic and Maass cusp forms. One also has to use classical transformation formulas for generalized hypergeometric functions of a unit argument.
@article{AIF_1994__44_5_1477_0, author = {Jakobson, Dmitry}, title = {Quantum unique ergodicity for {Eisenstein} series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$}, journal = {Annales de l'Institut Fourier}, pages = {1477--1504}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {5}, year = {1994}, doi = {10.5802/aif.1442}, mrnumber = {96b:11068}, zbl = {0820.11040}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1442/} }
TY - JOUR AU - Jakobson, Dmitry TI - Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$ JO - Annales de l'Institut Fourier PY - 1994 SP - 1477 EP - 1504 VL - 44 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1442/ DO - 10.5802/aif.1442 LA - en ID - AIF_1994__44_5_1477_0 ER -
%0 Journal Article %A Jakobson, Dmitry %T Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$ %J Annales de l'Institut Fourier %D 1994 %P 1477-1504 %V 44 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1442/ %R 10.5802/aif.1442 %G en %F AIF_1994__44_5_1477_0
Jakobson, Dmitry. Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$. Annales de l'Institut Fourier, Tome 44 (1994) no. 5, pp. 1477-1504. doi : 10.5802/aif.1442. http://archive.numdam.org/articles/10.5802/aif.1442/
[AS] Handbook of Mathematical Functions, AMS 55, 7th ed., 1968.
and ,[Ba] Generalized hypergeometric series, Cambridge Univ. Press, 1935. | Zbl
,[CdV] Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., 102 (1985), 497-502. | MR | Zbl
,[DRS] Density of Integer Points on Affine Homogeneous Varieties, Duke Math. Jour., 71 (1) (1993), 143-179. | MR | Zbl
, and ,[Fa] Fourier coefficients for a resolvent of a Fuchsian Group, J. für die Reine und Angew, Math., 293 (1977), 143-203. | MR | Zbl
,[Fo] Harmonic Analysis in Phase Space, AMS Studies, Princeton Univ. Press, 1989. | MR | Zbl
,[G] The square mean of Dirichlet series associated with cusp forms, Mathematika, 29 (1982), 278-295. | MR | Zbl
,[GR] Tables of Integrals, Series and Products, 4th ed., Academic Press, 1980.
and ,[K] Elementary Theory of Eisenstein Series, Kodansha, Ltd., Tokyo and John Wiley & Sons, New York, 1973. | MR | Zbl
,[L] SL2(R), Addison-Wesley, 1975.
,[LS] Quantum Ergodicity of Eigenfunctions on PSL2(Z)\H2, to appear.
and ,[Me] The order of the Maass L-function on the critical line, Colloquia mathematica societatis Janos Bolyai 51. Number theory, Budapest (Hungary), (1987), 325-354. | Zbl
,[Ro] Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, Math. Annalen, 167 (1966), 293-337. | Zbl
,[Sa] Horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739. | Zbl
,[Sn1] Ergodic Properties of Eigenfunctions, Uspekhi Mat. Nauk, 29 (6) (1974), 181-182.
,[Sn2] On the Asymptotic Properties of Eigenfunctions in the Regions of Chaotic Motions (Addendum to V. F. Lazutkin's book), KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, 1993.
,[Ti] The Theory of of The Riemann Zeta Function, Oxford, 1951. | MR | Zbl
,[Z1] Uniform distribution of Eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour., 55 (1987), 919-941. | MR | Zbl
,[Z2] Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, Journal of Functional Analysis, 97 (1991), 1-49. | MR | Zbl
,[Z3] Selberg Trace Formulas and Equidistribution Theorems for Closed Geodesics and Laplace Eigenfunctions: Finite Area Surfaces, Mem. AMS 90 (N° 465) (1992). | Zbl
,Cité par Sources :