Slopes of modular forms and congruences
Annales de l'Institut Fourier, Volume 46 (1996) no. 1, p. 1-32
Our aim in this paper is to prove congruences between on the one hand certain eigenforms of level pN and weight greater than 2 and on the other hand twists of eigenforms of level pN and weight 2. One knows a priori that such congruences exist; the novelty here is that we determine the character of the form of weight 2 and the twist in terms of the slope of the higher weight form, i.e., in terms of the valuation of its eigenvalue for U p . Curiously, we also find a relation between the leading terms of the p-adic expansions of the eigenvalues for U p of the two forms. This allows us to determine the restriction to the decomposition group at p of the Galois representation modulo p attached to the higher weight form.
Le but de cet article est d’établir des congruences entre d’une part certaines formes modulaires paraboliques primitives de niveau pN et de poids plus grand que 2 et d’autre part les formes modulaires de niveau pN et de poids 2, tordues par une puissance de l’opérateur θ. On sait a priori qu’il y a de telles congruences; la nouveauté ici est qu’on peut lire le caractère de la forme de poids 2 et la puissance de θ sur la pente de la forme de poids supérieur, i.e., sur la valuation de sa valeur propre pour l’opérateur U p . Curieusement, on trouve aussi un lien entre les termes dominants des développements p-adiques des valeurs propres de U p sur les deux formes. À partir de ceci, on détermine la restriction à un sous-groupe de décomposition en p de la représentation galoisienne attachée à la forme de poids plus grand que 2.
     author = {Ulmer, Douglas L.},
     title = {Slopes of modular forms and congruences},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {46},
     number = {1},
     year = {1996},
     pages = {1-32},
     doi = {10.5802/aif.1504},
     zbl = {0834.11024},
     mrnumber = {97i:11046a},
     language = {en},
     url = {}
Ulmer, Douglas L. Slopes of modular forms and congruences. Annales de l'Institut Fourier, Volume 46 (1996) no. 1, pp. 1-32. doi : 10.5802/aif.1504.

[D] P. Deligne, Formes modulaires et représentations l-adiques, in: Séminaire Bourbaki 1968/1969 (Lect. Notes in Math. 179) 139-172, Berlin-Heidelberg-New York, Springer, 1969. | Numdam | Zbl 0206.49901

[DR] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, in : W. Kuyk and P. Deligne (Eds.) Modular Functions of One Variable II (Lect. Notes in Math. 349) 143-316, Berlin-Heidelberg-New York, Springer, 1973. | MR 49 #2762 | Zbl 0281.14010

[Di] F. Diamond, The refined conjecture of Serre, To appear in the proceedings of a conference on elliptic curves, Hong Kong, December 1993. | Zbl 0853.11031

[E] B. Edixhoven, The weight in Serre's conjectures on modular forms, Invent. Math., 109 (1992), 563-594. | MR 93h:11124 | Zbl 0777.11013

[GiMe] H. Gillet and W. Messing, Cycles classes and Riemann-Roch for crystalline cohomology, Duke Math. J., 55 (1987), 501-538. | MR 89c:14025 | Zbl 0651.14014

[G] B.H. Gross, A tameness criterion for Galois representations associated to modular forms (mod p), Duke Math. J., 61 (1990), 445-517. | MR 91i:11060 | Zbl 0743.11030

[I] L. Illusie, Finiteness, duality, and Künneth theorems in the cohomology of the deRham Witt complex, in : M. Raynaud and T. Shiota (eds.) Algebraic Geometry Tokyo-Kyoto (Lect. Notes in Math. 1016) 20-72, Berlin-Heidelberg-New York, Springer, 1982. | MR 85m:14033 | Zbl 0538.14013

[KM] N. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Princeton, Princeton University Press, 1985. | MR 86i:11024 | Zbl 0576.14026

[KMe] N. Katz and W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 23 (1974), 73-77. | MR 48 #11117 | Zbl 0275.14011

[MW] B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent. Math., 76 (1984), 179-330. | MR 85m:11069 | Zbl 0545.12005

[Ri] K. Ribet, Report on mod l representations of Gal(Q/Q), In : U. Jannsen, S. Kleiman, J.-P. Serre (eds.), Motives (Proceedings of Symposia in Pure Mathematics 55, part 2, 639-676, Providence, American Mathematical Society, 1994. | MR 95d:11056 | Zbl 0822.11034

[Sc] A. J. Scholl, Motives for modular forms, Invent. Math., 100 (1990), 419-430. | MR 91e:11054 | Zbl 0760.14002

[S] J.-P. Serre, Groupes Algébriques et Corps de Classes, Paris, Hermann, 1959. | MR 21 #1973 | Zbl 0097.35604

[Sh] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, Princeton University Press, 1971. | Zbl 0221.10029

[U1] D. L. Ulmer, L-functions of universal elliptic curves over Igusa curves, Amer. J. Math., 112 (1990), 687-712. | MR 91j:11050 | Zbl 0731.14013

[U2] D. L. Ulmer, On the Fourier coefficients of modular forms, Ann. Sci. Ec. Norm. Sup., 28 (1995), 129-160. | Numdam | MR 95k:11066 | Zbl 0827.11024

[U3] D. L. Ulmer, On the Fourier coefficients of modular forms II, Math. Annalen, 304 (1996), 363-422. | MR 96j:11062 | Zbl 0856.11022