Galois covers between K3 surfaces
Annales de l'Institut Fourier, Volume 46 (1996) no. 1, p. 73-88
We give a classification of finite group actions on a K3 surface giving rise to K3 quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.
Nous donnons une classification des actions de groupes finis sur une surface K3 ayant des quotients K3, du point de vue des points fixes. Il est montré qu’à part deux cas, chacun des groupes donne un unique type de points fixes.
     author = {Xiao, Gang},
     title = {Galois covers between $K3$ surfaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {46},
     number = {1},
     year = {1996},
     pages = {73-88},
     doi = {10.5802/aif.1507},
     zbl = {0845.14026},
     mrnumber = {97b:14047},
     language = {en},
     url = {}
Xiao, Gang. Galois covers between $K3$ surfaces. Annales de l'Institut Fourier, Volume 46 (1996) no. 1, pp. 73-88. doi : 10.5802/aif.1507.

[D] I. Dolgachev, Integral quadratic forms : applications to algebraic geometry, Seminaire Bourbaki, 611 (1983). | Numdam | MR 85f:14036 | Zbl 0535.10018

[M] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., 94 (1988), 183-221. | MR 90b:32053 | Zbl 0705.14045

[N] V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71-137. | Zbl 0454.14017